 
                                                 
                                                 
                                                Арксинус ( y = arcsin x )  – это функция, обратная к синусу ( x = sin y ). Он имеет область определения    и множество значений  .
sin(arcsin x) = x     
arcsin(sin x) = x     
Арксинус иногда обозначают так:
.
График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.
Арккосинус, arccosАрккосинус ( y = arccos x )  – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения    и множество значений  .
cos(arccos x) = x     
arccos(cos x) = x     
Арккосинус иногда обозначают так:
.
График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.
ЧетностьФункция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x
Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x
Основные свойства арксинуса и арккосинуса представлены в таблице.
y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы Минимумы Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусовВ данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.
 ≈ 0,7071067811865476
 ≈ 0,8660254037844386
 
 
 
  
     при или 
 
     при и 
  
     при и
  
     при или 
 
     при и 
 
     при и
  
     при  
  
     при 
  
     при  
  
     при 
;
.
См. Вывод производных арксинуса и арккосинуса > > >
Производные высших порядков:
,
где  – многочлен степени . Он определяется по формулам:
;
;
.
См. Вывод производных высших порядков арксинуса и арккосинуса > > >
Делаем подстановку   x = sin t   и интегрируем по частям: 
  .
Выразим арккосинус через арксинус: 
  .
При   |x| < 1   имеет место следующее разложение:
 ; 
.
Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.
Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x      
cos(arccos x) = x    .
Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса: 
arcsin(sin x) = x     при  
arccos(cos x) = x     при .
 
                                                 
                                                 
                                                 
                                                
Складываем 1 и 2
2x = 18
X = 9
Затем выражаем y через x:
Подставляем x в одно из выражений.
4×9-y=7
36-y=7
-y=7-36
-y=-29
Y = 29