М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

ЗА ПРАВИЛЬНОСТЬ! ОЧЕНЬ НУЖНА С ЛОГАРИФМАМИ


ЗА ПРАВИЛЬНОСТЬ! ОЧЕНЬ НУЖНА С ЛОГАРИФМАМИ

👇
Ответ:
егор23578584
егор23578584
13.07.2020

Объяснение:

6) log2 (log3 (2,25) + log3 (log2 (16))) = log2 (log3 (9/4) + log3 (4)) = log2 (log3 (9) - log3 (4) + log3 (4)) =

= log2 (log3 (9)) = log2 (2) = 1

7) log9 (tg 240°) = log9 (tg (240° - 180°)) = log9 (tg 60°) = log9 (√3) = log3 (√3) / log3 (9) = (1/2) / 2 = 1/4 = 0,25

Здесь я применил известное свойство:

log_a (b) = log_c (b) / log_c (a)

Причем новое основание с может быть любым, лишь бы с > 0 и с ≠ 1. Я взял с = 3.

8) log_b (a) = 2; log_a (b^3) = 3*log_a (b) = 3/log_b (a) = 3/2 = 1,5

Здесь я применил другое свойство:

log_a (b) = 1 / log_b (a)

9) Во-первых, log3 (18) = log3 (2*9) = log3(2) + log3(9) = log3(2) + 2

Обозначим log3 (2) = x, чтобы проще было писать.

[2x^2 - (x+2)^2 - x(x+2)] / (2x + x + 2) = [2x^2 - (x^2+4x+4) - (x^2+2x)] / (3x+2) = (-4x-4-2x) / (3x+2) =

= -(6x+4) / (3x+2) = -2

10) Решим по действиям.

А) 36^(log6 (5)) = 6^2^(log6 (5)) = 6^(2log6 (5)) = 6^(log6 (25)) = 25.

Это по определению логарифма: Логарифм это показатель степени, в которую надо возвести основание, чтобы получить число под логарифмом.

Мы возвели 6 в степень логарифма и получили число под логарифмом 25.

Б) 10^(1 - lg 2) = 10^1 : 10^(lg 2) = 10 : 2 = 5

В) log9 (36) = log3 (36) / log3 (9) = log3 (6^2) / 2 = 2log3 (6) / 2 = log3 (6)

3^(log3 (6)) = 6

Г) 2^(-3log3 (2) - 1) = 2^(-3log3 (2)) : 2

(2^(-3log3(2) : 2)^(log3(2)^(-1)) = 2^(-3log3(2) / log3(2)) = 2^(-3) = 1/8

Подставляем все найденное в исходный пример:

(25 + 5 - 6) * 1/8 = 24/8 = 3

4,4(27 оценок)
Ответ:
aslambekova04
aslambekova04
13.07.2020

6. ㏒₂(㏒₃(2.25*4))=㏒₂(㏒₃3²)=㏒₂2=1

7.  ㏒₉(tg(270°-30°))=㏒₉(Ctg(30°)=㏒₃²(√3))=㏒₃²(3)¹/²=1/4=0.25

8. 3*(1/2)=1.5; ㏒ₐb³=3㏒ₐb=3/(㏒а по основанию b)

9. упростим числитель 2 ㏒²₃2-(㏒₃3²+㏒₃2)²-㏒₃2*(㏒₃2+2㏒₃)=

2㏒₃²2-4-4㏒₃2-㏒₃²2-㏒₃²2-2㏒₃2=-4-6㏒₃2=-2(2+3㏒₃2), упростим знаменатель.  2㏒₃2+2㏒₃3+㏒₃2=(2+3㏒₃2), после сокращения дроби получим -2(2+3㏒₃2)/(2+3㏒₃2),=-2

10. Упростим первую скобку. (6^(㏒₆5))²=5²=25; 10/10^(lg2)=10/2=5

3^(㏒₃²6²)=6, первая скобка примет вид 25+5-6=24;

Вторая скобка : упростим показатель. (-3㏒₃2-1)/㏒₃2=-3-1/㏒₃2

2^(-3-1/㏒₃2)=(1/8)*1/(2^(1/㏒₃2)=(1/8)*1/(2^(㏒₂3)=1/24

24*(1/24)=1

4,4(79 оценок)
Открыть все ответы
Ответ:
juljadob54
juljadob54
13.07.2020

ответ:

\frac{13k-4}{3-13k}+ \frac{x}{3-13k}=1  

\frac{13k-4+x}{3-13k}= \frac{3-13k}{3-13k}  

\frac{13k-4+x}{3-13k}- \frac{3-13k}{3-13k}   =0

\frac{13k-4+x-(3-13k)}{3-13k}=0

\frac{13k-4+x-3+13k}{3-13k}=0

\frac{26k-7+x}{3-13k}=0

\left \{ {{26k-7+x=0} \atop {3-13k \neq 0}} \right. ; \left \{ {{x=-26k+7} \atop {k \neq   \frac{3}{13} }} \right. ; \left \{ {{x=7-26k} \atop {k \neq   \frac{3}{13} }} \right.

ответ: если k \neq   \frac{3}{13} , то x=7-26k

объяснение:

4,4(73 оценок)
Ответ:
Сёма1992
Сёма1992
13.07.2020

1)b-\frac{b^{3}-24b-5}{b^{2} -25}=\frac{b^{3}-25b-b^{3}+24b+5}{b^{2}-25}=\frac{5-b}{(b-5)(b+5)}=-\frac{1}{b+5}=-\frac{1}{-5,5}=1: \frac{11}{2}=1*\frac{2}{11}=\frac{2}{11}: \boxed{\frac{2}{11}}

2)\frac{2x^{2}+7x+9}{x^{3}-1}+\frac{4x+3}{x^{2}+x+1}-\frac{5}{x-1}=\frac{2x^{2}+7x+9}{(x-1)(x^{2}+x+1)}+\frac{4x+3}{x^{2}+x+1}-\frac{5}{x-1}=\frac{2x^{2}+7x+9+4x^{2}-4x+3x-3-5x^{2}-5x-5}{(x-1)(x^{2}+x+1)}=\frac{x^{2}+x+1}{(x-1)(x^{2}+x+1)}=\frac{1}{x-1}=\frac{1}{1,1-1}=\frac{1}{0,1}=: \boxed{10}

4,4(68 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ