Постройте график функции y= x^2 - 4x + 4 найти область значения функции
y= x² - 4x + 4 ;
y = (x -2)²
График этой функции парабола , получается из графики функции у =x² перемещением по положительному направлению оси абсцисс _Ox
( направо) на две единицы . Вершина параболы оказывается в точке
на оси абсцисс с координатой x =2 * * * точка B(0 ; 2)_точка миним. * * *
ветви направленные вверх (по "+ 0у" ) .
График ось ординат пересекает в точке (0 ; 4) * * *x =0 ⇒y =(0 -2)² =4.* * *
y=(x -2)² ≥0
Минимальное значение функции равно нулю : Minу =0 , если x =2 .
Максимальное значение не имеетю
Область значения функции : E(y) = [ 0 ; +∞)
Далее, цифры в этом числе у бывают. Минимальное нечетное семизначное число 7654321. Его сумма цифр 28. Ближайшая сумма цифр, которая делится на 3 будет 30. Значит цифры надо увеличить на 2.
Если увеличить последнюю цифру, то чтобы цифры остались у ывающими придётся увеличивать все цифры, кроме того сумма не обязательно будет кратно 3. Поэтому надо увеличивать первые цифры.
Например 9654321, но очевидно, что это не минимальное число, минимальное будет 8754321