М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
andreyshilenko
andreyshilenko
14.06.2021 15:00 •  Алгебра

Решите систему уравнений подстановки
2х-у=4
{
х+у=5​

👇
Ответ:
dkrechetov85
dkrechetov85
14.06.2021

Из второго уравнения находим, что x=5-y;

Подставляем в первое:

2(5-y)-y=4;

10-2y-y=4;

-3y=-6;

y=2;

Теперь значение y подставляем в любое из уравнений:

2x-2=4;

2x=6;

x=3;

или  

x+2=5;

x=5-2;

x=3;

ответ : x=3, y=2.

Объяснение:

4,7(71 оценок)
Открыть все ответы
Ответ:
ubdjf
ubdjf
14.06.2021

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

4,6(70 оценок)
Ответ:
vikakulba
vikakulba
14.06.2021
1) Раскрываем скобки. Перемножаем каждое число на каждое.
а) (x - 3)(x - 7) - 2x(3x - 5) = x*x - 3*x - 7*x - 3(-7) - 2x*3x - 2x(-5) =
= x^2 - 10x + 21 - 6x^2 + 10x = -5x^2 + 21
б) 4a(a - 2) - (a - 4)^2 = 4a^2 - 8a - (a^2 - 8a + 16) =
= 4a^2 - 8a - a^2 + 8a - 16 = 3a^2 - 16
в) 2(m+1)^2 - 4m = 2(m^2+2m+1) - 4m = 2m^2 + 4m + 2 - 4m = 2m^2 + 2

2) а) Выносим х за скобки и раскладываем разность квадратов
x^3 - 9x = x(x^2 - 9) = x(x - 3)(x + 3)
б) Выносим -5 за скобки и получаем квадрат суммы
-5a^2 - 10ab - 5b^2 = -5(a^2 + 2ab + b^2) = -5(a + b)^2

3) Раскрываем скобки
(y^2 - 2y)^2 - y^2(y + 3)(y - 3) + 2y(2y^2 + 5) =
= y^4 - 4y^3 + 4y^2 - y^2(y^2 - 9) + 4y^3 + 10y =
= y^4 - 4y^3 + 4y^2 - y^4 + 9y^2 + 4y^3 + 10y = 13y^2 + 10y

4) а) Разность квадратов два раза
16x^4 - 81 = (4x^2 - 9)(4x^2 + 9) = (2x - 3)(2x + 3)(4x^2 + 9)
б) Разность квадратов
x^2 - x - y^2 - y = (x^2 - y^2) - (x + y) = (x-y)(x+y) - (x+y) = (x+y)(x-y-1)

5) x^2 - 4x + 9 = x^2 - 4x + 4 + 5 = (x - 2)^2 + 5
При любом х значение квадрата >= 0, а выражения >= 5
4,4(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ