Линейная функция — функция вида (для функций одной переменной).Основное свойство линейных функций: приращение функции пропорционально приращению аргумента. То есть функция является обобщением прямой пропорциональности.Графиком линейной функции является прямая линия, с чем и связано ее название. Это касается вещественной функции одной вещественной переменной.Частный случай линейной функции называется однородными линейными функциями (это в сущности синоним прямой пропорциональности), в отличие от — неоднородных линейных функций.
Мэрвэ Г. Гуру (4232) 2 года назад1). Для области определения ставим условие: -х2-8х-12 >=0 отсюда х2+8х+12 <=0 (и решим) D=64-48=16 x=(.-8+-4):2 х1=-2 х2=-6 график функции -парабола пересекает ось Ох в точках-2 и -6, ветви вверх. По условию берем отрицательную часть [-2; -6] 2). функция у=квадратный корень из -х2-8х-12 значения функции в промежутке [-5;-2]: вершина параболы в точке х=-4, у=2, наибольшее х=-5; у=корень из3 х=-2; у=0 наименьшее. 3) промёжутки возрастания и убывания функции на [-6; -4) функция возрастает, на (-4;-2] убывае
{(х²-у²)*(х²+у²)=15
(у²+3-у²)*(у²+3+у²)=15
3*(2у²+3)=15
2у²+3=5
2у²=2
у²=1
у₁=1 => х=√1+3=2
у₂=-1 => х= √1+3=2