М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bodnarhuk83
bodnarhuk83
23.05.2020 13:32 •  Алгебра

решить если можно то подробно ​


решить если можно то подробно ​

👇
Ответ:
Nemuverus
Nemuverus
23.05.2020

Объяснение:

********************************************


решить если можно то подробно ​
4,5(48 оценок)
Открыть все ответы
Ответ:
Xonus
Xonus
23.05.2020

2. Исследуем функцию на монотонность и на экстремум:

Критические точки функции:

,

,

Определим знак производной в каждом интервале монотонности:

, точка max, так как производная  изменила знак с "+" на "−",

, точка min, так как производная  изменила знак с "−" на "+".

Вычислим сам экстремум функции в этих точках:

3. Исследуем функцию на выпуклость, вогнутость кривой и перегиб:

Критические точки: , , ,  

Определим знак II производной в интервале кривизны:

, значит, кривая выпуклая на промежутке,

, значит, кривая вогнутая на промежутке;

Вычислим ординату точки перегиба:

4. Найдём дополнительные точки графика:

По результатам исследования строим график функции:

Пример 2. Исследовать функцию по первой и второй производной и построить её график:  .

1. Область определения функции ,

точка разрыва, чтобы определить её характер, найдём правосторонний и левосторонний пределы функции в этой точке:

Значит,  точка разрыва рода,

прямая  вертикальная асимптота графика функции.

Найдём наклонную асимптоту графика:

где угловой коэффициент прямой найдём по формуле

Так как  существует, то есть и наклонная асимптота. Вычисляем коэффициент b:

Значит, наклонная асимптота графика имеет уравнение .

2. Исследуем функцию на монотонность и на экстремум:

, учтем правило дифференцирования  

Критические точки функции:

,  , , , х=2,

4,6(47 оценок)
Ответ:
Dasha021659
Dasha021659
23.05.2020
Сумма двух модулей равна нулю только в том случае, если каждый из них равен нулю, поскольку значение модуля не может быть отрицательным. Значит, нам нужно решить два уравнения:
|х2-7х-8|=0  и   |х3-5х-4|=0
Решением задачи будут те корни, которые удовлетворяют обоим уравнениям.
Решаем первое уравнение:
x^2-7x-8=0\\
D=49+32=81\\
x_1=\frac{7+9}{2}=8\\
x_2=\frac{7-9}{2}=-1\\
Подставим полученные корни 8 и -1 во второе уравнение:
8^3-5*8-4=468 - не подходит
(-1)^3-5*(-1)-4=0 - подходит
Второе уравнение можно не решать - хотя оно имеет больше корней, но все они, кроме х=-1, не подходят к первому уравнению.
ответ: {-1}
4,7(61 оценок)
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ