М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Aloyna11111
Aloyna11111
12.06.2020 22:51 •  Алгебра

Доказать что выражение -a в квадрате+4a-9 может принимать лишь отрицательные значения

👇
Ответ:
-x^2+4x-9
(a заменил на x для удобства)

Вершина у параболы находится по формуле
x_0= \frac{-b}{2a} \\ x_0 = \frac{-4}{2*(-1)} = \frac{4}{2} = 2 \\ y_0 = -2^2+4*2-9 =-4+8-9=4-9=-5

Коэффициент а (ax^2+bx+c) в нашей формуле отрицательный, следовательно ветви направлены вниз

В итоге получаем что вершина параболы ниже оси Оx, а ветви направлены вниз, из чего делаем вывод, что парабола будет принимать только отрицательные значения
4,5(25 оценок)
Ответ:
Aznabaev09
Aznabaev09
12.06.2020
-a^2+4a-9=-(a^2-4a+4)-5=-(a-2)^2-5\ \textless \ 0

Левая часть неравенства принимает лишь отрицательные значения. Что и нужно было показать.
4,8(85 оценок)
Открыть все ответы
Ответ:

Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.

\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.

Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.

\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.

Объяснение:

удачи получить хорошую отметку

4,5(74 оценок)
Ответ:
smail1900
smail1900
12.06.2020

Дробь не имеет смысла если её знаменатель равен нулю т.к. на ноль делить нельзя.

\dfrac{x}{x-4} ;\; x-4=0;\; \bold{x=4} dfrac{2b^2-9}{b(b-5)} ;\; b(b-5)=0;\; \bold{b=\{0;5\}}.

Дробь равна нулю если числитель равен нулю, а знаменатель - не равен.

\dfrac{x+1}{x} =0;\; \begin{Bmatrix}x+1=0\\x\ne 0\end{matrix} \\\begin{Bmatrix}x=-1\\x\ne 0\end{matrix} \qquad \bold{x=-1}dfrac{x(x-2)^2 }{x-2} =0;\; \begin{Bmatrix}x(x-2)^2 =0\\x-2\ne 0\end{matrix} \\\begin{Bmatrix}x=\{0;2\}\\x\ne 2\end{matrix} \qquad \bold{x=0}.

Объяснение:

удачи получить хорошую отметку

4,5(53 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ