Домножим числитель и знаменатель на такое число, что бы получить в знаменателе квадрат целого числа. Проще всего домножить на 7:
28/49 и 35/49
Но между 28 и 35 нету квадратов целых чисел, поэтому надо ещё домножить числитель и знаменатель каждого числа, но уже на квадрат какого-то целого числа, например, на 4 ,9, 16 и т.д. Попробуем умножить на 4:
112/196 и 140/196
Между числами 112 и 140 есть число 121, которое является квадратом числа 11. Поэтому искомое число 121/196 (так как оно будет квадратом числа 11/14).
Можно калькулятором себя проверить, действительно ли число 121/196 будет находится между 4/7 и 5/7:
4/7 = 0,5714...
121/196 = 0,6173...
5/7 = 0,7143...
2. Натуральным числом. Множество натуральных чисел алгебраически замкнуто относительно операции сложения.
3. В том случае, если уменьшаемое больше вычитаемого.
4. Произведение натуральных чисел — натуральное число. Множество натуральных чисел алгебраически замкнуто относительно операции умножения.
5. Нет, не всегда. Пример: 9 не делится нацело на 5. В таком случае можно разделить с остатком, где неполное частное и остаток будут натуральными числами.
6. На единицу (нейтральный элемент в аксиоматике умножения).