<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
22
Объяснение:
1. Чтобы найти наибольшее значение функции, возьмем производную от этой функции и приравняем ее к нулю (т.к. минимумы и максимумы функции находятся в точках, где производная равна 0)
y' = 3x²-5x - 2 = 0
2. Решаем это квадратное уравнение:
D = 49
x_1 =( 5 -7 ) / 6 = -1/3 (не подходит, точка не принадлежит указанному промежутку).
x_2 = (5 + 7) / 6 = 2, принадлежит промежутку.
3. Находим значение функции в точке x = 2
y (x = 2) = 2³-2.5*2²-2*2+6 = 8 - 10 - 4 + 6 = 14 - 14 = 0
4. ВНИМАНИЕ: наибольшее значение может достигаться на краях промежутка , обязательно проверяем края
y (x = 0) = 0 - 2.5 * 0 - 2* 0 + 6 = 6
y (x = 4) = 4³ - 2.5 * 4² - 2*4 + 6 = 64 - 40 - 8 + 6 = 22
Итого, самое большое значение равно 22 и достигается в точке x = 4