Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Возводим обе части в квадрат, переносим 4 влево, получаем квадратное уравнение:
По теореме Виета произведение корней равно 6, сумма равна -1. Корни: -3, 2.
Если в уравнении есть выражение под корнем, то чаще всего его нужно "уединять" (переносить все, кроме корня, за знак равенства) и потом возводить левую и правую части в квадрат, тогда этот корень пропадает.
В данном случае:
То же самое, но здесь скорее повезло, что справа пропала переменная, могло быть и не так хорошо :)