1) При а0 = -20 получится линейное уравнение
(-20-5)x + 1 = 0
-25x + 1 = 0
x = 1/25 = 0,04
2) При a ≠ -20 будет квадратное уравнение.
D = (a-5)^2 - 4(a+20)*1 = a^2-10a+25-4a-80 = a^2-14a-55 =
= (a^2-2*7a+49) - 49-55 = (a-7)^2 - 104 = (a-7-√104)(a-7+√104)
При D = 0, то есть при a1 = 7 + √104 и a2 = 7 - √104 будет 2 равных корня.
x1 = x2 = (5 - a)/(2a + 40)
При a ∈ (7 - √104; 7 + √104) корней нет.
При а ∈ (-oo; -20) U (-20; 7 - √104) U (7 + √104; +oo) будет 2 разных корня.
x1 = (5 - a - √(a^2 - 14a - 55))/(2a + 40)
x2 = (5 - a + √(a^2 - 14a - 55))/(2a + 40)
Решение.
Получаем уравнение:0,4х + 0,15у = 0,2(х + у +3)
Выполним вторую операцию:
Итак, 0,4х + 0,15у + 0,8·3 = 0,5(х + у +3).
Для решения задачи получаем систему уравнений:
Решаем систему уравнений:
ответ:3,4 кг 40 % кислоты и 1,6 кг 15 % кислоты.