1. Преобразуем выражение, перенесем (- 3х5) и (- 2х) в правую часть уравнения, меняя знак.
2x8 + 4x4 + 1 = 3x5 + 2x
2. Любое число (и положительное, и отрицательное) в четной степени дает положительный ответ, то есть в левой части данного уравнения всегда будет положительный ответ.
3. Предположим, что х < 0, тогда 3х5 будет отрицательное число, 2х тоже будет отрицательное число. То есть в правой части уравнения выходит отрицательный ответ, что недопустимо для сохранения равенства.
Пусть х деталей в час должен был обрабатывать токарь по плану. Применив новый резец, он стал обтачивать в час на 20 деталей больше, т.е. х+20 деталей. Тогда токарь должен был обработать 120 деталей за часов, а обработал за часов, закончив работу на 1 час раньше. Составим и решим уравнение: - =1 (умножим на х(х+20), чтобы избавиться от дробей) - =1x(x+20) 120*(х+20)-120х=х²+20х 120х+2400-120х-х²-20х=0 -х²-20х+2400=0 х²+20х-2400=0 D=b²-4ac = 20²-4*1*(-2400)=400+9600=10 000 (√10000=100) х₁= х₂= - не подходит, поскольку х<0. ОТВЕТ: по плану токарь должен был обработать 40 деталей в час. ------------------------- Проверка: 120:40=3 часа 120:(40+20)=120:60=2 часа 3 часа - 2 часа = 1 час - разница
2x8 - 3x5 + 4x4 - 2x + 1 = 0
1. Преобразуем выражение, перенесем (- 3х5) и (- 2х) в правую часть уравнения, меняя знак.
2x8 + 4x4 + 1 = 3x5 + 2x
2. Любое число (и положительное, и отрицательное) в четной степени дает положительный ответ, то есть в левой части данного уравнения всегда будет положительный ответ.
3. Предположим, что х < 0, тогда 3х5 будет отрицательное число, 2х тоже будет отрицательное число. То есть в правой части уравнения выходит отрицательный ответ, что недопустимо для сохранения равенства.
ответ: Уравнение не имеет отрицательных корней.
Объяснение: