Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
собственная скорость лодки (у) км/час ---это и скорость в стоячей воде)))
тогда скорость ПО течению будет (у+х) км/час
скорость ПРОТИВ течения будет (у-х) км/час
t = S / v время = путь / скорость
на путь 54 км ПО течению реки лодка потратит (54 / (у+х)) часов
на путь 48 км БЕЗ течения лодка потратит (48 / у) часов и всего 6 часов)))
(54 / (у+х)) + (48/у) = 6
(64/у) - (36/(у+х)) = 2
система
48х + 102у = 6*у*(х+у)
64х + 28у = 2*у*(х+у)
8х + 17у = у*(х+у)
32х + 14у = у*(х+у)
8х + 17у = 32х + 14у
24х = 3у
у = 8х
8х + 17*8х = 8х*(х+8х)
18х = 9х²
2х = х²
х² - 2х = 0
х*(х - 2) = 0 ---> х = 0 (этот корень не имеет смысла)))
х = 2 (км/час) ---скорость течения реки
у = 8х = 16 (км/час) собственная скорость лодки
ПРОВЕРКА:
(54 / 18) + (48 / 16) = 3+3 = 8 часов)))
64 / 16 = 4 часа в стоячей воде двигалась лодка
36 / 18 = 2 часа по течению реки ---это на 2 часа больше)))