Сделаем замену |x| = y, тогда x^2 = |x|^2 = y^2. Получаем уравнение: y^2 - 6y + 5 - a = 0, D/4 = 3^2 - (5-a) = 9 - 5 + a = 4+a, Если D/4 <0, то решений нет. Если D/4 = 0, то единственное решение квадратного уравнения y=A, <=> |x|=A, не более двух корней (поэтому эти значения отметаем). D/4 >0, <=> 4+a>0, <=> a>-4. Тогда квадратное уравнение имеет два корня. y1 = 3-(√a+4), y2 = 3+(√a+4), Видим, что y2 = 3+(√a+4)>=3>0, и уравнение |x|=y2 имеет два корня. Уравнение же |x|=y1 = 3-(√a+4) может не иметь корней, иметь один корень (тот случай, который нас интересует) или два корня. |x|=y1 = 3-(√a+4) = 0, тогда один корень 3=(√a+4), 3^2= 9 = a+4, a = 9-4 = 5, Условие a = 5>-4 выполняется. При этом (a=5) Корни совпасть не могут: уравнение |x|=y2 дает отрицательный и положительный корни, а уравнение |x|=y1 дает корень равный нулю. ответ. а=5.
√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В. 1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин). В момент встречи оба тела вместе проехали весь круг, за время t = x/(v1+v2) (мин) При этом 1-ое тело на 100 м больше, чем 2-ое тело. v1*t = v2*t + 100 v1*x/(v1+v2) = v2*x/(v1+v2) + 100 Умножаем все на (v1+v2) v1*x = v2*x + 100(v1+v2) x(v1-v2) = 100(v1+v2) x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин. v1*9 = v2*t = v2*x/(v1+v2) 9v1(v1+v2) = v2*x А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин. v2*16 = v1*t = v1*x/(v1+v2) 16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными. { x = 100(v1+v2)/(v1-v2) { 9v1(v1+v2) = v2*x { 16v2(v1+v2) = v1*x Подставляем 1 уравнение во 2 и 3 уравнения { 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2) { 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2) Сокращаем (v1+v2) { 9v1 = 100v2/(v1-v2) { 16v2 = 100v1/(v1-v2) Получаем { 0,09v1 = v2/(v1-v2) { 0,16v2 = v1/(v1-v2)
-11,04х
Объяснение:
...,.........