Перечислены все случаи пересечения, на выбор.
Объяснение:
№1 пересекает №№2,3,4,5,7,8, параллельна 6 и 9.
№2 пересекает №№1,3,4,5,6,7,8,9.
№3 пересекает №№1,2,4,5,6,7,8,9.
№4 пересекает №№1,2,3,5,6,7,8,9.
№5 пересекает №№1,2,3,4,6,7,8,9.
№6 пересекает №№2,3,4,5,7,8, параллельна 1 и 9.
№7 пересекает №№1,2,3,4,5,6,8,9.
№8 пересекает №№1,2,3,4,5,6,7,9.
№9 пересекает №№2,3,4,5,7,8, параллельна 1 и 6.
Заключение: графики линейных функций, коэффициент k которых (при х) одинаковый, параллельны.
1) y = -2x-1 2 6)y= -2x-3,5 9)y= -2x+5
решаем это уравнение методом интервалов.
находим нули подмодульных выражений
х=5 и х=2, отмечаем их на координатной прямой. эти числа делят координатную прямую на 3 промежутка:
(-бесконечность, 2) берём и подставляем любое число из этого промежутка в уравнение, при этом правильно раскрывая знаки. в результате на первом промежутке имеенм, что х=0, значит ноль = корень.
на втором промежутке имеем, что -2х=0, значит ноль так же будет корнем.
на третем промежутке имеем, что 2х-14=0, х=7
сумма равна 7