Решать такое надо графически.
Построим графики уравнений f(x,y)=0 (к 1-му неравенству); g(x,y)=0 (ко 2-му неравенству)
В 1-м неравенстве видно, что это эллипс.
Приведу его к каноническому виду:
Это значит, что центр эллипса в точке (2;-3), по x он растянется максимум на 4 единицы, по у на 2.
Во 2-м видно, что будут 2 прямые.
Построили графики на одной системе координат.
1-е неравенство говорит нам, что это геометрическое место точек, которые находятся ВНУТРИ эллипса, причем не захватывая его контур.
Теперь ко 2-му неравенству.
Прямые пересекаются (у них разные угловые коэффициенты) и образуют перекрестие, деля плоскость на 4 части. Нам будут нужны 2 части, это верхняя часть и нижняя, можно это проверить, подставив точку (0;0) во 2-е неравенство и (0;-5).
Получаются два сектора, причем прямые в них включатся в зону, так как 2-е неравенство системы нестрогое, а вот контуры эллипса как бы выколоты. Штриховкой я отметил нужную область.
Решение системы уравнений (-2; -1); (2; 1).
Объяснение:
Решить алгебраического сложения систему уравнений:
2х² + у² = 9
у² - х² + 3 = 0
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно второе уравнение умножить на 2:
2х² + у² = 9
2у² - 2х² = -6
Складываем уравнения:
2х² - 2х² + у² + 2у² = 9 - 6
3у² = 3
у² = 1
у=±√1
у=±1;
Теперь подставить значение у в любое из двух уравнений системы и вычислить х:
2х² + у² = 9
2х² = 9 - у²
2х² = 9 - 1
2х² = 8
х² = 4
х = ±√4
х=±2
Решение системы уравнений (-2; -1); (2; 1).