М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Катякатя2005
Катякатя2005
10.05.2021 07:37 •  Алгебра

Найдите на сколько порядков: а) число 895000000 больше, чем 800000 б) число 0,00000087 меньше, чем число 0,0052

👇
Ответ:
57safavi
57safavi
10.05.2021
А) на 8,150,000
б)на0.00519913
4,4(35 оценок)
Открыть все ответы
Ответ:
estvolygina
estvolygina
10.05.2021
Это парабола, т.к. старшая степень равна 2, ветви параболы направлены вниз, т.к. коэффициент перед x^2 отрицательный. значит, вершина параболы и есть самая высокая точка с максимальным значением y. формула вершины параболы y=ax^2+bx+c: x0=-b/(2a) в нашем случае имеем: x0=-9/(2*(-2)) или x0=2,25 подставляем в исходную формулу вместо x и получаем: y=-2(2,25)^2+9*2,25-4=6,125 есть и другой способ, через производную. известно, что экстремумы функции получаются решением уравнения y'=0, т.е. нужно найти производную, приравнять к 0 и решить как обычное уравнение: y'=(-2*x^2+9x-4)'=-2*2x+9 -4x+9=0 -4x=-9 x=2,25 далее, аналогично, подставим x в исходное выражение и найдем y.  ответ: 6,125
4,4(4 оценок)
Ответ:
Марк2992
Марк2992
10.05.2021
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ