Это парабола, т.к. старшая степень равна 2, ветви параболы направлены вниз, т.к. коэффициент перед x^2 отрицательный. значит, вершина параболы и есть самая высокая точка с максимальным значением y. формула вершины параболы y=ax^2+bx+c: x0=-b/(2a) в нашем случае имеем: x0=-9/(2*(-2)) или x0=2,25 подставляем в исходную формулу вместо x и получаем: y=-2(2,25)^2+9*2,25-4=6,125 есть и другой способ, через производную. известно, что экстремумы функции получаются решением уравнения y'=0, т.е. нужно найти производную, приравнять к 0 и решить как обычное уравнение: y'=(-2*x^2+9x-4)'=-2*2x+9 -4x+9=0 -4x=-9 x=2,25 далее, аналогично, подставим x в исходное выражение и найдем y. ответ: 6,125
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
б)на0.00519913