В решении.
Объяснение:
Решить уравнения:
1) 10/(x+2) + 9/x = 1:
Умножить уравнение на х(х+2), чтобы избавиться от дробного выражения, надписать над числителями дополнительные множители:
=х*10 + (х+2)*9 = х(х+2)*1
Раскрыть скобки:
10х + 9х +18 = х² + 2х
Привести подобные члены:
-х²-2х+19х+18=0
-х²+17х+18=0/-1
х²-17х-18=0, квадратное уравнение, ищем корни:
D=b²-4ac =289+72=361 √D= 19
х₁=(-b-√D)/2a
х₁=(17 - 19)/2
х₁= -2/2
х₁= -1;
х₂=(-b+√D)/2a
х₂=(17 + 19)/2
х₂=36/2
х₂=18;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) x/(x+7) - (x-7)/(x-7)= (63-5x)/(x²-49)
Путешествие катера из города А в город В:
(х+21)m=72
(x-21)n=72
m+n=y Здесь: m-время пути катера из города А в город В, а n-время пути катера обратно, тогда:
m=y-n
(х+21)(y-n)=72
(x-21)n=72
Время пути канистры:
х*у=21
Получаем систему уравнений:
(х+21)(y-n)=72
(x-21)n=72
х*у=21
x*y-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
x*n-21*n=72
х*у=21
21-x*n+21*y-21*n=72
n(x-21)=72
х*у=21
21-21n+72-21n+21y=72
n(21/y - 21)=72
-42n+21y=-21 :21
n=72/(21/y - 21)
-2n+y=-1
n=72/(21/y - 21)
y=2n-1
n*(21/(2n-1) - 21)=72
n*(21-42n+21)=72(2n-1)
-42n²+42n-144n+72=0
-42n²-102n+72=0
-21n²-51n+36=2601+12096=5625
√5625=75
n1=(51+75)/-42=-3 <0 - ответом быть не может (скорость не может быть отрицательной)
n2=(51-75)/-42=24/42=12/21
y=2n-1=2*12/21 - 1=24/21 - 1=8/7 - 1=1 1/7 - 1=1/7 км/ч