М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Daryanaa7
Daryanaa7
27.11.2020 16:08 •  Алгебра

Разложите на множители трёхчлен, выделив предварительно квадрат двучлена: x^2+6x−40

👇
Ответ:
zmeya9
zmeya9
27.11.2020
Конечно! Давайте разложим данный трехчлен на множители, выделив предварительно квадрат двучлена.

У нас имеется трехчлен x^2+6x−40. Чтобы разложить его на множители, сначала нужно найти квадрат двучлена.

Для этого возьмем коэффициент при х (в данном случае это 6), разделим его на 2 и возведем полученное число в квадрат. Получаем (6/2)^2=9. Это и есть квадрат двучлена.

Теперь добавим и вычтем этот квадрат двучлена из нашего трехчлена:
x^2 + 6x + 9 - 9 - 40

Заметим, что первые три члена (x^2+6x+9) образуют квадрат двучлена (x+3)^2. Для этого возьмем квадратный корень от первого члена (x^2), удвоим его и умножим на корень второго члена (6x). Получаем (x+3)^2.

Теперь можем записать выражение с выделением квадрата двучлена:
(x+3)^2 - 9 - 40

Упростим это выражение:
(x+3)^2 - 49

Теперь рассмотрим разность квадратов. Мы получили разность двух квадратов: у нас есть выражение вида a^2 - b^2 = (a+b)(a-b). В нашем случае:
(x+3)^2 - 49 = (x+3+7)(x+3-7)

Выполняем вычитание во втором множителе:
(x+3-7) = (x-4)

Теперь можем записать окончательный результат:
(x+3)^2 - 49 = (x+3+7)(x-4)

Итак, мы разложили трехчлен на множители:
x^2+6x−40 = (x+10)(x-4)

Надеюсь, это решение понятно для вас! Если у вас остались вопросы, не стесняйтесь задавать.
4,6(6 оценок)
Проверить ответ в нейросети
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ