Упрощение
(4x 2 + -9) + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
(-9 + 4x 2 ) + -2 (2x + -3) + x (2x + -3) = 0
Избавиться от скобок, заключающих (-9 + 4x 2 )
-9 + 4x 2 + -2 (2x + -3) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + -2 (-3 + 2x) + x (2x + -3) = 0
-9 + 4x 2 + (-3 * -2 + 2x * -2) + x (2x + -3) = 0
-9 + 4x 2 + (6 + -4x) + x (2x + -3) = 0
Измените порядок условий:
-9 + 4x 2 + 6 + -4x + x (-3 + 2x) = 0
-9 + 4x 2 + 6 + -4x + (-3 * x + 2x * x) = 0
-9 + 4x 2 + 6 + -4x + (-3x + 2x 2 ) = 0
Измените порядок условий:
-9 + 6 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -9 + 6 = -3
-3 + -4x + -3x + 4x 2 + 2x 2 = 0
Объедините похожие термины: -4x + -3x = -7x
-3 + -7x + 4x 2 + 2x 2 = 0
Зерноуборочный подобные термины: 4x 2 + 2x 2 = 6x 2
-3 + -7x + 6x 2 = 0
Решение
-3 + -7x + 6x 2 = 0
Решение для переменной 'x'.
Разложите на множители трехчлен.
(-1 + -3x) (3 + -2x) = 0
Подзадача 1
Установите коэффициент '(-1 + -3x)' равным нулю и попытайтесь решить:
Упрощение
-1 + -3x = 0
Решение
-1 + -3x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «1» к каждой стороне уравнения.
-1 + 1 + -3x = 0 + 1
Объедините похожие термины: -1 + 1 = 0
0 + -3x = 0 + 1
-3x = 0 + 1
Объедините похожие термины: 0 + 1 = 1
-3x = 1
Разделите каждую сторону на «-3».
х = -0,3333333333
Упрощение
х = -0,3333333333
Подзадача 2
Установите множитель '(3 + -2x)' равным нулю и попытайтесь решить:
Упрощение
3 + -2x = 0
Решение
3 + -2x = 0
Переместите все термины, содержащие x, влево, все остальные термины - вправо.
Добавьте «-3» к каждой стороне уравнения.
3 + -3 + -2x = 0 + -3
Объедините похожие термины: 3 + -3 = 0
0 + -2x = 0 + -3
-2x = 0 + -3
Объедините похожие термины: 0 + -3 = -3
-2x = -3
Разделите каждую сторону на «-2».
х = 1,5
Упрощение
х = 1,5
Решение
х = {-0,3333333333, 1,5}
Во втором случае не пересекаются, т.к. левая часть не равна правой.
Графиками являются прямые: в первом случае проходит через точку -4, находится в 1 и 3 четверти (k>0); во втором случае проходит через 2 и находится во 2 и 4 четверти (k<0).
3. Формула линейной функции имеет вид: y=5.
4. Т.к. они параллельны, то угловые коэффициенты равны (k=1.5). Искомая прямая проходит через А. Подставляем значения в формулу y=1.5x+c. Ищем с, который равен -2.5. Получаем, что y=1.5x-2.5. Графиком является прямая, проходящая через точку -2.5.
5. Т.к. прямые параллельны, то угловой коэффициент одинаков, то есть равен -0.4 (k= -0.4). Получаем, что y= -0.4x + 1.
Для проверки принадлежности точки, необходимо доказать верность тождества:
-19= -0.4*50+1
-19= -20+1
-19= -19, т.к. левая часть равна правой, то тождество оказалось верным, следовательно точка С(50; -19) принадлежит графику функции y= -0.4x+1.