МОЖНО ПОБЫСТРЕЕ.нарисуйте прямоугольник ABCD. выберите внутри его точку M. Измерьте углы AMC, BMC, CMD ,DMA и найдите сумму полученных значений. сколько ваша сумма отличается от 360 градусов?
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
Объяснение:
Подкоренное выражение х²-5х+6 /х-4 ≥0 х²-5х+6 ≥ 0 0 ∠ х-4
(х-3)(х-2)≥0
это точки пересечения с осью Х.
Парабола ветвями вверх,
значит она отрицательна между корнями ,если при этом и знаменатель отрицательный,то дробь положительна. х-4∠0 х∠4
2≤ х ≤3 общий ответ 2≤ х ≤3. Теперь рассмотрим случай когда оба положительны и числитель и знаменатель.
4∠х знаменатель положительный. А числитель неотрицательный,когда х находится правее большего и левее меньшего корня.
х≤2 или 3≤х общий ответ 4∠х
ООФ 2≤ х ≤3 или 4∠х
2)Подкоренное выражение х²-9х/8х ≥0 х(х-9) ≥ 0 0 ∠ 8х
х(х-9)≥0 -это точки пересечения с осью Х.
х∠0 или 9 ∠х числитель положителен. знаменатель положителен при 0∠х общим ответом в этой части 9∠х
тепреь рассмотрим ,когда оба отрицательны.
х(х-9)≤0 0≤х≤9
знаменатель меньше нуля при х∠0 . Это должно выполняться одновременно.0∠х≤9 обратите внимание,что х строго больше 0! Поскольку делить на 0 нельзя!
Теперь можем объединить ответы. от 0 до 9 включительно рабортает нижний ответ,а после этого верхний. Значит можно просто записать ООФ : 0∠х