y= x² - 4x +3 . Это парабола ,ветви вверх. Область определения :х-любое, множество значений функции [ -1; +∞) ;
a) найдите точки пересечения графика с осью ОУ
Точки пересечения с оу ( х=0)
у= 0²- 4*0+3= 3, Точка (0; 3).
b) найдите точки пересечения графика с осью ОХ;
Точки пересечения с осью ох( у=0)
x²- 4x+3=0 , Д=4 , х₁=(4+2)/2=3, х₂=(4-2)/2=1 . Точки (3;0) , ( 1;0);
c) запишите координаты вершины параболы
х₀=-в/2а, х₀=-(-4)/2= 2 , у₀=2²-4*2 +3= -1 , ( 2; -1).
Тогда наименьшее значение функции у=-1 ( при х=2)
Наибольшего значения нет ;
d) запишите уравнение оси симметрии параболы
х=2;
Дополнительно
f) Промежутки возрастания убывания функции
Функция убывает при х≤ 2 ,
функция возрастает при x≥2;
Промежутки знакопостоянства функции :
+ . - .+
______(1)_______(3)_______
у>0 при х <1 и x>3
у<0 при 1 <х< 3 ;
1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю
2а-а²=а(2-а)
1)а=4
4(2-4)=4*(-2)=-8
2) а=0
0*(2-0)=0
3)а=-3
-3(2-(-3)=-3*5=-15
4)а=2
2*(2-2)=0
Объяснение: