ответ: -2.
Объяснение:
√(х²+7х+6)=√(2х²+12х+12)
Определим область определения:
х²+7х+6≥0 и 2х²+12х+12≥0;
1)х²+7х+6≥0;
если х²+7х+6=0, то из торемы Виета х₁= -6, х₂= -1, тогда:
х²+7х+6=(х+6)(х+1);
(х+1)(х+6)≥0 ⇒ х∈(-∞;-6)∪(-1;+∞).
2) х²+6х+6≥0;
если х²+6х+6=0, то D=9-6=3, х₁= -3+√3, х₂= -3-√3 , тогда:
х²+6х+6=(х+3-√3)(х+3+√3);
(х+3-√3)(х+3+√3)≥0 ⇒ х∈(-∞;-3-√3)∪(-3+√3;+∞).
D(у): (-∞;-6)∪(-1;+∞).
Возведём обе части уравнения в квадрат:
х²+7х+6=2х²+12х+12;
-х²-5х-6=0;
х²+5х+6=0;
Из теоремы Виета х₁= -2; х₂= -3 - не входит в область определения.
ответ: -2.
а)2sin²x-3sinx-2=0
Замена sinx=t
2t²-3t-2=0
D=3²+4×2×2=25
t₁= 3+√D÷4=3+5÷ 4=8÷4=2
t₂=3-√D÷4=3-5÷4=-2÷4=-0,5
Возвращаемся к замене
sinx=2 sinx=-0,5
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
4cos²x+4sinx-1=0
cos²x=1-sin²x
4( 1-sin²x)+4sinx-1=0
4-4sin²x+4sinx-1=0
-4sin²x+4sinx-1+4=0
-4 sin²x+4sinx+3=0 ÷(-1)
4sin²x-4sinx-3=0
Замена sinx=t
4t²-4t-3=0
D=4²+4×4×3=16+48=64
t₁=4+√D÷8= 4+8÷8=12÷8=1,5
t₂=4-√D÷8=4-8÷8= -4÷8=-0,5
Возвращаемся к замене
sinx=1,5 sinx=-1\2
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
ответ: 2*5-3*(-3)=10+9=19
Объяснение: