На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.
найти вероятность, что при бросании монеты
Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).
Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.
Объяснение:
1) 15y²+6y =5y+2
15y²-5y+6у-2=0
5у(3у-1)+2(3у-1)=0
(3у-1)(5у+2)=0
3у-1=0 5у+2=0
3у=1 5у=-2
у=1/3 у=-2/5
ответ: -2/5; 1/3.
2) y³-2y²+у-2=0
y²(у-2)+(у-2)=0
(у-2)(y²+1)=0
у-2=0 y²+1=0
у=2 y²=-1 нет корней, так как квадрат всегда неотрицательное число
ответ: 2.
3) y³+6y²-y-6=0
y²(у+6)-(у+6)=0
(у+6)(y²-1)=0
у+6=0 y²-1=0
у=-6 y²=1
у=1 и у=-1
ответ: -1; 1; 2.
4) y³-12=3y²-4y
y³-3y²+4у-12=0
y²(у-3)+4(у-3)=0
(у-3)(y²+4)=0
у-3=0 y²+4=0
у=3 y²=-4 нет корней, так как квадрат всегда неотрицательное число
ответ: 3.