Пусть 5ab исходное число, ab5 новое число. По условию задачи ab5> 5ab на 279, получим ab5-5ab=279 ab5 начинаем рассуждать: из 5 нужно вычесть число, чтобы - получилось 9. Этого сделать нельзя, поэтому занимаем 5ab десяток у b. Тогда 15-6=9, значит b =6. теперь b=6, и у b заняли десяток, значит из 5 вычитаем 279 число и получаем 7. Опять невозможно и занимаем у a десяток. Получаем , 15-8=7, значит a=8. В самом деле у a заняли десяток, осталось 7. 7-5=2 верно. Значит, исходное число 586
Даны два равнобедренных треугольника с равными углами при вершинах. В первом треугольгике длина основания равна 5 см, а периметр 25 см. Во втором треугольнике длина основания равна 15 см. укажите длины боковых сторон второго треугольника. а) 30см б) 60см в) 10см
ответ а)
треугольники подобны, а2=15, а1=5 а2:а1=15:5=3 ⇒ боковые стороны второго треугольника в 3 раза больше боковых сторон первого треугольника. Периметр первого треугольника равен 25, основание равно 5 , ⇔ боковые стороны равны по10, т.о. боковые стороны второго треугольника равны по 3·10=30
а чтооо делать