М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
capppcappi
capppcappi
04.04.2020 20:26 •  Алгебра

Розвязать неравность (x-2)(4x+1)< 2(x+1)+3

👇
Открыть все ответы
Ответ:
QwErTyля
QwErTyля
04.04.2020
Чтобы определить, чему равен показатель степени с основанием m, нужно решить уравнение, которое представляет собой равенство показания степени и данного выражения.

У нас есть выражение m - 8 * m - 7 : m - 13

Для начала, перепишем его, чтобы упростить вычисления:

m - 8 * (m - 7) : (m - 13)

Далее, выполним операцию в круглых скобках. Умножение имеет приоритет перед делением:

m - 8 * (m - 7) : (m - 13)
m - 8 * (m - 7) / (m - 13)

Теперь выполним умножение:

m - 8m + 56 / (m - 13)

Далее, разделим 56 на (m - 13):

m - 8m + 56 / (m - 13)
m - 8m + 56/m - 13

Применим принцип порядка действий: сначала выполняем умножение и деление, а затем сложение и вычитание:

m - 8m + 56/m - 13
-7m + 56/m - 13

Теперь наше выражение имеет вид -7m + 56/m - 13.

Таким образом, показатель степени с основанием m, равным m - 8 * m - 7 : m - 13, равен -7m + 56/m - 13.

Ответ: -7m + 56/m - 13.
4,7(73 оценок)
Ответ:
steshina27
steshina27
04.04.2020
Хорошо, давайте решим эту задачу вместе.

Нам нужно найти площадь фигуры, которую ограничивают линии y=sinx, y=0, x=п/4 и x=п/2.

Для начала, давайте нарисуем графики функций y=sinx и y=0 на графике с координатной плоскостью.
Нам нужно определить, какие интервалы x нам нужно рассмотреть для построения графика. Заметим, что у нас заданы границы x=п/4 и x=п/2. Также помним, что функция y=sinx повторяется через каждые 2п. Поэтому начнем с интервала от 0 до 2п, чтобы полностью охватить все значения x, которые нам интересны.

Для начала, нарисуем график функции y=sinx на интервале от 0 до 2п.
Построение графика функции y=sinx будет выглядеть следующим образом:

|
------ |
| ,"
---- | ," ,
|" ,
--- | ,
| |
--- | ,"
| ,
-- | ,"
|,"

Помните, что исходная функция y=sinx имеет период 2п, амплитуду 1 и смещена вверх на 1 единицу по оси y.

Следующим шагом нам нужно определить, какие части графика нас интересуют. Нам нужна область ограниченная осью x=п/4, осью x=п/2 и осью y=0.

У нас есть две части графика y=sinx, которые нас интересуют:

Первая часть - график y=sinx на интервале от 0 до п/4.
Вторая часть - график y=sinx на интервале от п/4 до п/2.

Давайте рассмотрим каждую часть по отдельности и найдем их площади.

Найдем площадь первой части фигуры, ограниченной линиями y=sinx, y=0 и x=п/4.

Для начала, найдем точки пересечения y=sinx и y=0. Это происходит, когда sinx равняется нулю.

Помните, что y=sinx пересекает ось X в точках, кратных пи.
То есть, чтобы найти точку пересечения нашей первой части фигуры, мы должны найти решение уравнения sinx=0 на интервале от 0 до п/4.

Синтаксический сахат avras ошибку при создании графика цикла но плохо отправлять команды на данной платформе
если Вы хотите я пришлю Вам это в виде кода пайтона

С учетом этого, мы можем продолжить и найти площадь первой части фигуры. Площадь этой части можно найти, используя определенный интеграл, так как здесь у нас идет непрерывная функция.

Если вы учите интегралы, вы можете выполнить следующий интеграл:
∫[0, п/4] sinx dx = [-cosx] |[0, п/4] = -cos(п/4) - (-cos0) = -cos(п/4) + 1

Перейдем ко второй части фигуры, ограниченной линиями y=sinx, y=0 и x=п/2.

Для начала, найдем точки пересечения y=sinx и y=0 на интервале от п/4 до п/2.
Мы знаем, что y=sinx пересекает ось X в точках, кратных пи.
Таким образом, чтобы найти точку пересечения нашей второй части фигуры, мы должны найти решение уравнения sinx=0 на интервале от п/4 до п/2.

Теперь мы можем найти площадь второй части фигуры, используя аналогичный метод:
∫[п/4, п/2] sinx dx = [-cosx]|[п/4, п/2] = -cos(п/2) - (-cos(п/4)) = -cos(п/2) + cos(п/4)

Итак, чтобы найти площадь всей фигуры, нам нужно сложить площади обеих частей.
Площадь всей фигуры = площадь первой части + площадь второй части

То есть, площадь всей фигуры = (-cos(п/4) + 1) + (-cos(п/2) + cos(п/4))

Можно складывать слагаемые:
Площадь всей фигуры = -cos(п/4) - cos(п/2) + 1 + cos(п/4)

Заметим, что cos(п/4) = √2/2 и cos(п/2) = 0
Таким образом, мы можем заменить значения и упростить выражение:
Площадь всей фигуры = -√2/2 - 0 + 1 + √2/2

Легко заметить, что -√2/2 и √2/2 взаимно уничтожают друг друга:
Площадь всей фигуры = 1

Итак, площадь фигуры, ограниченной линиями y=sinx, y=0, x=п/4 и x=п/2, равна 1.
4,7(64 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ