М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Яяяяя11111111
Яяяяя11111111
24.10.2020 02:16 •  Алгебра

Надо расписать пример,заранее спс


Надо расписать пример,заранее спс

👇
Ответ:
Mashka168363838
Mashka168363838
24.10.2020

вот все расписано, только там сбоку иногда написано подробно, как вычислять, (ну это если ты не знаешь) удачи, хороших оценок


Надо расписать пример,заранее спс
Надо расписать пример,заранее спс
4,4(30 оценок)
Открыть все ответы
Ответ:
rabramchik
rabramchik
24.10.2020
Найти корень уравнения 4x^2+3x-10=0, если их несколько, то указать сумму. 

Сразу вернёмся к формуле, по которой собственно и находятся корни квадратного уравнения (уравнения вида ax^2+bx+c=0): 
x_{1,2}=\frac{-bб\sqrt{D}}{2a}, дискриминант же расписывается по-своему: \sqrt{D}=\sqrt{b^2-4ac}. Дискриминант как бы заслужил своё отдельное внимание, ведь именно при его вычислении люди нередко допускают ошибки. Теперь – решаем

4x^2+3x-10=0, отсюда: a=4;b=3;c=-10, значит
\sqrt{D}=\sqrt{b^2-4ac}=\sqrt{3^2-4*4*(-10)}=\sqrt{9+160}=\sqrt{169}=13
мы получили \sqrt{D}=13; это как в алгебраических выражений седьмого класса – ты складываешь буквы, подставляешь вместо них какие-то числа и считываешь ответ, так вот здесь тоже самое

возвращаемся к формуле корней квадратного уравнения: 
x_{1,2}=\frac{-bб\sqrt{D}}{2a}=\frac{-3б13}{2*4}\to\left[\begin{array}{ccc}x_1=\frac{-3+13}{8}=\frac{5}{4}\\x_2=\frac{-3-13}{8}=-2\end{array}\right
оба корни действительны и являются решением данного уравнения, а теперь моё мини-задание: \frac{5}{4}+(-2)=-0,75

ответ: сумма корней квадратного уравнения 4x^2+3x-10=0 равна -\frac{3}{4}
4,6(97 оценок)
Ответ:
pziipzii
pziipzii
24.10.2020

1. записываем пример.

2. раскрываем формулу разности квадратов (x^2-y^2) и закрываем формулу квадрата разности (x^2-2xy+y^2) и одновременно с этим проводим другие действия. при раскрытии формулы разности квадратов получается (x-y)(x+y). при закрытии формулы квадрата разности получается (x-y)^2. значит, это можно раскрыть как выражение (x-y), возведенное в квадрат, то есть, умножить это выражение на такое же. получается (x-y)(x-y). проводим остальные действия: выносим общие множители выражений за скобки и превращаем вторую дробь в обратную. в итоге получаются сократимые выражения, состоящие из множителей. (x+2y) сокращается в числителе первой дроби и в знаменателе второй. (x-y) сокращается в знаменателе первой дроби и в числителе второй. далее просто умножаем оставшиеся выражения на множители, которые выносили ранее. ответ:

\frac{3x - 3y}{5x - 5y} .

вывод. применение формул сокращенного умножения - их нужно закрывать или раскрывать в зависимости от того, что требуется в примере.


Как применять формулы в примерах? например при с корнями т.д? большая с этим проблема, формулы знаю
4,4(7 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ