М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Radmir5689
Radmir5689
01.06.2021 16:49 •  Алгебра

Представьте в виде многочлена степень


Представьте в виде многочлена степень

👇
Открыть все ответы
Ответ:
khadija7
khadija7
01.06.2021
№1. Делаю только «а», «б» делаете по аналогии.
а) Предположим, что графики функций y = x^2 и y = 4. Чтобы найти координату x точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
x^2 = 4 \\ 
x = \pm 2
y можем найти подставив x в выражение первой функции y = x^2, а можно сделать проще. Так как пересечение будет с прямой y = 4, то и точки пересечения будут иметь координату y = 4. Итак, получилось две точки пересечения с координатами: (2;4),(-2;4).
Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу.
№2.
а) Дан отрезок [0;1] (этот отрезок по оси x), найдем значения y на концах этого отрезка:
y_0 = f(0) = 0^2 = 0 \\ 
y_1 = f(1) = 1^2 = 1
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее.
б) Делаем ту же работу:
y_{(-3)} = f(-3) = (-3)^2 = 9 \\ 
y_0 = f(0) = 0^2 = 0
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.

№1. найдите точки пересечения прямой и параболы: а) y=x^2(x в квадрате) и y=4 б) y= -x^2(x в квадрат
4,7(70 оценок)
Ответ:
hey112
hey112
01.06.2021
1) log₁₂3 + log₁₂4 = log₁₂(3*4) = log₁₂12 = 1
2) log₇98 - log₇2 = log₇(98/2) = log₇49 = 2
3) log₂5-log₂35 + log₂56 = log₂(5/35) + log₂56 = log₂(\frac{5*56}{35})=log₂8 = 3
4) log₁/₃5 - log₁/₃5 + log₁/₃ 9 = log₁/₃9 = -2

1) lg4 + lg250= lg(4*250) = lg1000 = 3
2) log₂6 - log₂\frac{6}{32} = log₂(\frac{6*32}{6}) = log₂32 = 5
3) (log₁₂4 + log₁₂36)² = (log₁₂144)² = 2² = 4
4) lg13 - lg 130 = lg\frac{13}{130} = lg\frac{1}{10} = -1
5) (log₂13-log₂52)⁵ = (log₂\frac{13}{52})⁵ = (log₂\frac{1}{4})⁵ = (-2)⁵ = -32
6) (log₀.₃9 - 2log₀.₃10)⁴ = (log₀.₃9 - log₀.₃100)⁴ = (log₀.₃\frac{9}{100})⁴ = (log₀.₃0.09)⁴ = 2⁴ = 16

1) log₃x = -1
x = 3⁻¹ = 1/3
2) log₂x = -5
x = 2⁻⁵ = 1/32
3) log₃x = 2
x = 3² = 9
4) log₄x = 3
x = 4³ = 64
5) log₄x = -3
x = 4⁻³ = 1/64
6) log₇x = 0
x = 7° = 1
7) log₁/₇x = 1
x = 1/7
8) log₁/₂x = -3
x = (1/2)⁻³ = 8

1) log₂log₂log₃81 = log₂log₂4 = log₂2 = 1
2) log₂log₃log₁/₃(1/27) = log₂log₃3 = log₂1 = 0
3) log_{ \sqrt{3} }log₅125 = log_{ \sqrt{3} }3 = 2
4) log₄log₃81 = log₄4 = 1
4,4(43 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ