Обозначим расстояние между селами AB = S км, а скорости грузовика и автомобиля соответственно g км/ч и a км/ч.
Если бы они поехали одновременно навстречу друг другу, то встретились бы через 1 ч 12 мин = 1 1/5 ч = 6/5 ч
g + a = S : (6/5) = 5S/6
Теперь рассмотрим, как они ехали на самом деле.
Грузовику понадобилось на 1 ч больше, чтобы проехать S км.
S/g = S/a + 1
Подставим из 1 уравнения a = 5S/6 - g = (5S-6g)/6 во 2 уравнение:
S/g = S / ((5S-6g)/6) + 1
S/g = 6S/(5S-6g) + 1 = (6S+5S-6g)/(5S-6g)
S/g = (11S-6g)/(5S-6g)
Решаем как пропорцию
S(5S-6g) = g(11S-6g)
5S^2 - 6Sg = 11Sg - 6g^2
5S^2 - 17Sg + 6g^2 = 0
Делим всё уравнение на g^2, получаем:
5(S/g)^2 - 17S/g + 6 = 0
Это квадратное уравнение относительно дроби S/g.
D = 17^2 - 4*5*6 = 289 - 120 = 169 = 13^2
S/g = (17 - 13)/10 = 4/10 = 0,4 ч - слишком мало.
S/g = (17 + 13)/10 = 30/10 = 3 ч - подходит.
ответ: 3 ч.
Объяснение:
xy=-2
x-4y=6
Решаем методом подстановки. Выражаем из второго уравнения х
(6+4y)y=-2
x=6+4y
Выписываем первое уравнение системы и решаем его.
(6+4y)y=-2
6y+4y^2=-2|/2
3y+2y^2+1=0
2y^2+3y+1=0
D=3^2-4*2=1
√1=1
y_1=(-3+1)/4=-0.5
y_2=(-3-1)/4=-1
Подставляем у и находим х
x_1=6+(-4*0.5)=4
x_2=6+4*(-1)=2
ответ: (4;-0.5) U (2;-1)
б)
(x+4)^2-y=0
y-x=6
Выражаем из второго у , подставляем и решаем.
(x+4)^2 -(6+x)=0
y=6+x
Решаем первое уравнение системы:
(x+4)^2 - 6 - x = 0
x^2+8x+16-6-x=0
x^2+7x+10=0
D=49-40=9
√9=3
x_1=(-7+3)/2=-2
x_2=(-7-3)/2=-5
Подставляем х и находим у
y_1=6+(-2)=4
y_2=6+(-5)=1
ответ: (-2;4) U (-5;1)