Пусть расстояние от в до с равно х км, тогда расстояние от а до в равно х-29 км, все растояние пройденное туристом равно х+х-29=2х-29 км. время, затраченное на путь ав равно (х-29): 3 час, на путь вс равно х: 4, все затраченное время равно \frac{x-29}{3}+\frac{x}{4}=\frac{4(x-29)+3x}{12}=\frac{4x-116+3x}{12}=\frac{7x-116}{12} час. по условию составляем уравнение: (2x-29): \frac{7x-116}{12}=\frac{35}{9}; \\ 12(2x-29)=\frac{35(7x-116)}{9}; \\ 9*12(2x-29)=35(7x-116); \\ 108(2x-29)=245x-4060; \\ 216x-3132=245x-4060; \\ 216x-245x=3132-4060; \\ -29x=-928; \\ 29x=928; \\ x=928: 29; \\ x=32 значит расстояние от в до с равно 32 км, расстояние ав равно 32-29=3 км от а до в турист шел 3: 3=1 час, от в до с 32: 4=8 ч
Докажем, сначала, что куб числа - монотонная функция. Монотонная функция -функций, у которой одному значению переменной соответствует только одно значение функции. Пойдем методом от противного пусть в точках х и х+с функция принимает одно и то же значение, тогда: x^3=(x+c)^3 x^3=x^3+3x^2c+3xc^2+c^3 3c *x^2+ 3c^2 *x +c^3=0|:c не равное 0 3x^2+3cx+c^2=0 D=9c^2-4*3c^2=-3c^2<0 Значит не существует такого с, что функция в при нескольких икс принимает одно и то же значение, а значит она монотонна. Если функция монотонна, то достаточно доказать, что если функция f(х+1) больше функции f(x) -то функция явл возрастающей. Пусть: (x+1)^3>x^3 x^3+3x^2+3x+1>x^3 3x^2+3x+1>0 D=9-12=-3<0 Значит уравнение корней не имеет, у параболы ветви вверх, значит она всюду больше 0 Отсюда следует, что: (x+1)^3>x^3 f(x+1)>f(x) Значит функция является монотонно возрастающей.