Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
Объяснение:
Sinx+cosx=1-sin2x (1)
sinx+cosx=cos²x+sin²x-2sinxcosx
sinx+cosx=(cosx-sinx)²
sinx+cosx=a
(sinx+cosx)²=a²
sin²x+cos²x+2sinxcosx=1+2sinxcosx⇒2sinxcosx=a²-1
возвращаемся в (1)
1-(a²-1)-a=0
1-a²+1-a=0
a²+a-2=0
применим теорему Виета x²+px+q=0⇒x1+x2=-p U x1*x2=q
a1+a2=-1 U a1*a2=-2
a1=1⇒sinx+cosx=1
sinx+sin(π/2-x)=1
2sinπ/4cos(x-π/4)=1
cos(x-π/4)=1/√2⇒x-π/4=+-π/4+2πn
x=π/4-π/4+2πn,n∈Z⇒x=2πn,n∈Z U x=π/4+π/4+2πn,n∈Z⇒x=π/2+2πn,n∈Z
a2=-2⇒2sinπ/4cos(x-π/4)=-2
cos(x-π/4)=-√2<-1 нет корней
ответ x=π/2+2πn,n∈Z;х=2πn,n∈Z
Подробнее - на -