М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yarmen021
yarmen021
09.10.2021 20:17 •  Алгебра

Найдите наименьшее значения функции у= х^4 на отрезке [-1;2]

👇
Ответ:
їка
їка
09.10.2021

0

Объяснение:

Найдём экстремумы функции y= x^4:

Найдем производную: y'=(x^4)'=4x^3

Найдем корни уравнения y'=0\Leftrightarrow4x^3=0\Leftrightarrow x^3=0 \Leftrightarrow x=0

То есть в точке 0 функция имеет глобальный минимум.

Так как функция x^4 в точке 0 имеет глобальный минимум:

\displaystyle\min_\mathbb{R}(x^4)=0, а точка 0 находится между точками -1 и 2, то \displaystyle\min_\mathbb{R}(x^4)=\min_{[-1;2)}(x^4)=0

4,8(42 оценок)
Открыть все ответы
Ответ:
jekaroikp00z44
jekaroikp00z44
09.10.2021

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

4,6(51 оценок)
Ответ:
inglis1982
inglis1982
09.10.2021
1) графический. Нужно найти для каждого уравнения 2 корня, построить 2 прямые, где они пересекутся это и будет решение системы уравнения.
2) Метод подстановки 1) Выразим х через у из первого уравнения системы: х = 5 - 3у.

2)Подставим полученное выражение вместо х во второе уравнение системы: (5 - 3у) у — 2.
3)Решим полученное уравнение:


4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если  то 
5)    Пары (2; 1) и  решения заданной системы уравнений.


ответ: (2; 1)
3)Алгебраическое сложение. Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения: 

Вычтем второе уравнение системы из ее первого уравнения:


В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:


Эту систему можно решить методом подстановки. Из второго уравнения находим  Подставив это выражение вместо у в первое уравнение системы, получим


Осталось подставить найденные значения х в формулу 

Если х = 2, то


Таким образом, мы нашли два решения системы: 

4,6(91 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ