2x-12=2(x-6) (чтобы раскрыть скобки мы 2×x и 2×(-6). )
2x-12=2x-12
0x=0
ответ:бесконечное множество решений
(т. к.при умножение любого числа на 0 получится 0)
1) х² - 8х + 15 ≥ 0
Решаем уравнение
х² - 8х + 15 = 0
D = 8² - 4 · 15 = 4 = 2²
x₁ = 0.5(8 - 2) = 3
x₂ = 0.5( 8 + 2) = 5
Значения функции у = х² - 8х + 15 не отрицательны при х≤ х₁ и х≥ х₂
Неравенство имеет решение при х ∈ (-∞; 3] ∪ [5; +∞)
2) х² - 6х + 9 < 0
Преобразуем левую часть неравенства
(х - 3)² < 0
Квадрат любого числа неотрицателен, поэтому неравенство не имеет решений.
3) х² - 4х + 20 ≤ 0
Решаем уравнение
х² - 4х + 20 = 0
D = 4² - 4 · 20 = -64
Уравнение решений не имеет. Поэтому все значения функции у = х² - 4х + 20 положительны, и неравенство не имеет решений.
4) -х² + 7х - 12 < 0
Решаем уравнение
-х² + 7х - 12 = 0
D = 7² - 4 · 12 = 1
x₁ = -0.5(-7 + 1) = 3
x₂ = -0.5(-7 - 1) = 4
Значения функции у = -х² + 7х - 12 отрицательны при х > х₁ и х < х₂
Неравенство имеет решение при х ∈ (3; 4)
Y= - 2,5X - 6
Объяснение:
Чертим график лин. ФУНК. y=-3x+1 и ставим точку с координатами (-2; - 1).
Через эту точку проводим прямую перпендикулярно линейной функции y=-3x+1.
Формула линейной функции равна y=kx+m, теперь находим две точки на графике второй лин фун 1) с координатами (0; - 6), 2) с координатами (-2; - 1). Поставляем в формулу лин фун координаты точки 1) и получается - 6=0k+ m то есть m=-6.
Мы нашли m. Теперь k. Поставляем в формулу лин фун координаты точки 2) и m и получается - 1=-2k - 6 то есть 2k=-5 то есть k=-2,5. Мы узнали k и m. Поставляем их в формулу лин фун и получается y= - 2,5x - 6. Готово!
Если что, лин фун это линейная функция
Я понятно объяснил?
Раскрываем скобки: 2х-12=2х-12
Переносим с иксом влево, меняя знак: 2х-2х=12-12
Решаем: 0х=0
0=0
ответ. х-любое число