В решении.
Объяснение:
Решить систему уравнений:
а)
ху² - х = 2у
ху² - у = 3х
Выразить ху² через другие члены уравнений:
ху² = 2у + х
ху² = 3х + у
Приравнять правые части уравнений (левые равны):
2у + х = 3х + у
2у - у = 3х - х
у = 2х;
Теперь подставить значение у в любое из двух уравнений:
ху² - х = 2у
х * (2х)² - х = 2 * 2х
4х³ - х = 4х
4х³ - 5х = 0 неполное кубическое уравнение
х(4х² - 5) = 0
х₁ = 0;
4х² - 5 = 0
4х² = 5
х² = 5/4
х = ±√5/4
х₂ = -√5/2;
х₃ = √5/2.
у = 2х
у₁ = 2 * х₁
у₁ = 0;
у₂ = 2 * (-√5/2);
у₂ = -√5;
у₃ = 2 * √5/2;
у₃ = √5;
Решение системы уравнений: (0; 0); (-√5/2; √5); (√5/2; √5).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
в)
х² + у² = 10
х² * у² = 9
Выразить х² через у² во втором уравнении:
х² = 9/у²
Подставить значение х² в первое уравнение и вычислить у:
9/у² + у² = 10
Умножить уравнение (все части) на у², чтобы избавиться от дробного выражения:
9 + у⁴ = 10у²
у⁴ - 10у² + 9 = 0
Ввести новую переменную t:
у² = t, тогда уравнение примет вид:
t² - 10t + 9 = 0, решить как квадратное уравнение:
D=b²-4ac =100 - 36 = 64 √D=8
t₁=(-b-√D)/2a
t₁=(10 - 8)/2
t₁=2/2
t₁=1;
t₂=(-b+√D)/2a
t₂=(10 + 8)/2
t₂=18/2
t₂=9;
Вернуться к первоначальным переменным:
у² = 1
у = ±√1
у₁ = -1;
у₂ = 1;
х² = 9/у²
х = 3/у
х₁ = 3/-1
х₁ = -3;
х₂ = 3/1
х₂ = 3;
у² = 9
у₃ = 3
у₄ = -3
х₃ = 3/3
х₃ = 1;
х₄ = 3/-3
х₄ = -1.
Решение системы уравнений (-3; -1); (3; 1); (1; 3); (-1; -3).
Проверка путём подстановки вычисленных значений х и у в систему уравнений показала, что данное решение удовлетворяет данной системе уравнений.
В решении.
Объяснение:
1. Запишите, какое из данных ниже уравнений является полным квадратным. Решите неполное квадратное уравнение.
А) 7х+49=0;
В) 3х²+14х+11=0; полное квадратное уравнение.
С) 5х² -125=0. неполное квадратное уравнение.
5х² = 125
х² = 125/5
х² = 25
х = ±√25
х₁ = -5;
х₂ = 5.
2. Реши уравнение с вычисления дискриминанта:
5х²-14х+9=0.
D=b²-4ac =196 - 180 = 16 √D= 4
х₁=(-b-√D)/2a
х₁=(14 - 4)/10
х₁=10/10
х₁=1;
х₂=(-b+√D)/2a
х₂=(14 + 4)/10
х₂=18/10
х₂=1,8.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3. Составьте квадратное уравнение, корни которого равны: 3 и -5.
(х - 3)*(х + 5) = х² + 5х - 3х - 15 = х² + 2х - 15.
4. Разложите на множители квадратный трехчлен: 2х²+15х+13.
2х²+15х+13 = 0
D=b²-4ac =225 - 104=121 √D= 11
х₁=(-b-√D)/2a
х₁=(-15 - 11)/4
х₁= -26/4
х₁= - 6,5;
х₂=(-b+√D)/2a
х₂=(-15 + 11)/4
х₂= -4/4
х₂= -1.
2х²+15х+13 =2*(х + 6,5)*(х + 1)
Всё в объяснениях
Объяснение:
а) 4 √27,5 6
б) 5 √14+3 7