1) Пусть х+2 - боковая сторона(т.к. треугольник равнобедренный, то боковые стороны равны, а значит обозначение для второй стороны не требуется), тогда основание х. Составим уравнение:
х+2+х+2+х=34
3х+4=34
3х=34-4
3х=30
х=10 (см)- основание треугольника
значит 10+2=12 (см) каждая из боковых сторон.
ответ:12 см,12 см,10 см.
2)Т.к. треугольник равнобедренный, то АВ=ВС.По свойству медианы равнобедренного треугольника ВМ это биссектриса и высота, следовательно если ВМ биссектриса, то углы АВМ и СВМ равны между собой.Для тругольников АВМ и СВМ ВМ-это общая сторона следовательно треугольник АВМ=треугольнику СВМ(по 2-ум сторонам и углу между ними) т.к. ВМ-общая сторона, АВ=ВС,а углы АВМ и СВМ равны. ч. и т.д.
где (хо; уо) - центр окружности, R - радиус окружности
А(3;1) и В(-1;3) - точки окружности =>
{ (3-xo)²+(1-yo)²=R²
{ (-1-xo)²+(3-yo)²=R² => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)²
По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2
Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим:
(3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)²
(3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)²
9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo
18-24xo=26-28xo
4xo=8
xo=2
yo=3*2-2=6-2=4
S(2;4) - центр окружности
Находим квадрат радиуса окружности:
R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10
Запишем полученное уравнение окружности:
(x-2)²+(y-4)²=10