Как видим, условия Даламбера-Эйлера выполняются. При этом частные производные u и v непрерывны по обеим переменным, а значит W(z) аналитична. Тогда ее производная равна
Справедлива теорема: Пусть функция y=f(x), непрерывная на интервале (a; b), имеет на этом интервале только одну точку экстремума – точку x1. Тогда если x1 - точка максимума, то f(x1)- наибольшее значение функции f(x) на интервале (a; b); если же x1 - точка минимума, то f(x1) - наименьшее значение функции f(x) на интервале (a; b).
- интервал (0; 3) принадлежит этому множеству, и функция там непрерывна.
x=1 - единственная критическая точка на (0; 3). + - - о----------|-----------o------> 0 1 3 Поскольку в окрестности х=1 производная меняет знак с "+" на "-", сама функция изменяет поведение с возрастания на убывание, т.е. х=1 - точка максимума. Следовательно, в силу указанной выше теоремы функция принимает наибольшее значение на интервале (0; 3) именно при х=1. Это значение равно у(1)= ln 1 - 1 = 0 - 1 = - 1. ответ: 1.
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Объяснение:
Как видим, условия Даламбера-Эйлера выполняются. При этом частные производные u и v непрерывны по обеим переменным, а значит W(z) аналитична. Тогда ее производная равна