И квадрат, и модуль числа не могут быть отрицательными. x²=-1 левая часть уравнения - квадрат числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. квадрат числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
|x|=-5 левая часть уравнения - модуль числа х, правая часть - число " -5", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
x⁶+1=0 x⁶=-1 левая часть уравнения - шестая (чётная) степень числа х, правая часть - число " -1", т.е. число меньшее нуля. Т.к. чётная степень числа не может быть отрицательной, делаем вывод: уравнение не имеет корней.
|x|+10=0 |x|=-10 левая часть уравнения - модуль числа х, правая часть - число " -10", т.е. число меньшее нуля. Т.к. модуль числа не может быть отрицательным, делаем вывод: уравнение не имеет корней.
Ну вот они- Квадрат суммы двух величин равен квадрату первой плюс удвоенное произведение первой на вторую плюс квадрат второй. (a+b)2=a2+2ab+b2Квадрат разности двух величин равен квадрату первой минус удвоенное произведение первой на вторую плюс квадрат второй. (a-b)2=a2-2ab+b2Произведение суммы двух величин на их разность равно разности их квадратов. (a+b)(a-b)=a2-b2Куб суммы двух величин равен кубу первой плюс утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй плюс куб второй. (a+b)3=a3+3a2b+3ab2+b3Куб разности двух величин равен кубу первой минус утроенное произведение квадрата первой на вторую плюс утроенное произведение первой на квадрат второй минус куб второй. (a-b)3=a3-3a2b+3ab2-b3Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.( a+b)(a2-ab+b2)=a3+b3Произведение разности двух величин на неполный квадрат суммы равно разности их кубов. (a-b)(a2+ab+b2)=a3- b3
Нет.
Если х = 0,тогда
0(0-3)=9,
0 = 9 - не правильно.