М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
аааа287
аааа287
04.06.2022 19:44 •  Алгебра

Разделите данный отрезок на 5 равных частей ( смотрите пример 2) No2

Прямые, пересекающие стороны угла, параллельны. ВС=10 АД=16 ДЕ=20
Найти отрезок АВ


Разделите данный отрезок на 5 равных частей ( смотрите пример 2) No2 Прямые, пересекающие стороны уг

👇
Открыть все ответы
Ответ:
valeriadavrukova
valeriadavrukova
04.06.2022
Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.

2т^2-кт+4=0
8т^2-2кт+4=0

-4т^2+2кт-8=0
8т^2-2кт+4=0

4т^2-4=0
2т^2-кт+4=0

т=1 или т= -1

Если т=1 то к=6,
если т= -1 то к= -6.

Таким образом получили 2 случая:

1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2

2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2

ответ: к=6, х1=1, х2=2 или к= -6, х1= -1, х2= -2
4,7(93 оценок)
Ответ:
lolkekpfff
lolkekpfff
04.06.2022
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.
4,5(96 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ