1) x^2 >= 196
x <= -14 U x >= 14
2) x(x+5)(2-6x)(2x-4) <= 0
Разделим неравенство на (-4). При этом знак неравенства поменяется.
x(x+5)(3x-1)(x-2) >= 0
По методу интервалов, особые точки: -5, 0, 1/3, 2.
x ∈ (-oo; -5] U [0; 1/3] U [2; +oo)
3) Это НЕ неравенство
4) x^2*(2+3) > 0
5x^2 > 0
Это неравенство истинно при любом x, кроме 0.
x ∈ (-oo; 0) U (0; +oo)
5) (x+2)/(x-4)^2 >= 0
x ≠ 4
(x - 4)^2 > 0 при любом x, не равном 4, поэтому можно на нее умножить.
x + 2 >= 0
x ∈ [-2; 4) U (4; +oo)
3*(1-q^n)=1023*(1-q)
q^(n-1)=256
(1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1)
Вероятно, все ж , q -целое, тогда либо q=2 n=9
либо 4 n=5
либо 16 n=3
256 n=2
Легко видеть, что годится только q=4 n=5
ответ: q=4 n=5
б) 243* (3^(-n)+1)=182*(1/3+1)
243*(1-(-3)^(-n))=182*4/3
729 -3^6*(-3)^(-n)==728
(3^6)*(-3)^(-n)=1
ответ:
n=6
an=243*(-1/(3^5))=-1