1) y=x2-4x+3 - ветви направлены вверх
х=)/2*1=4/2=2
у=2*2-4*2+3=4-8+3=-1
(2, -1) - координаты вершины параболы
2)y=-x2-12x+1 - верви направлены вниз
х=)/2*(-1)=12/(-2)=-6
у=-6*(-6)-12*(-6)+1=-36+72+1=37
(-6, 37) - координаты вершины параболы
3)y=x2-10x+15 - верви направлены вверх
х=)/2*1=10/2=5
у=5*5-10*5+15=25-50+15=-10
(5, -10) - координаты вершины параболы
4)y=x2-7x+32.5 - верви направлены вверх
х=)/2*1=7/2=3,5
у=3,5*3,5-7*3,5+32,5=12,25-24,5+32,5=20,25
(3,5 ; 20,25) - координаты вершины параболы
-3*-2.3 + 4 = 6.9 + 4 = 10.9
2)Найдите значение аргумента,при котором значение функции y=2/7x - 9 равно -5
2/(7x) - 9 = -5
2/(7x) = 4
1/(7x) = 2
7x = 1/2
x = 1/14
Если (2/7)x - 9 = -5, то
(2/7)x = 4
(1/7)х = 2
х = 14
3)Найдите координаты точки пересечения графиков функции y = -5x и y = 3x+8
-5x = 3x+8
8х = -8
х = -1
4)Постройте график функции y= -1/3x +2
Если это график функции (-1/3)*x + 2, то это прямая, которую можно построить по двум точкам, например, при х = 0 у = 2 и при х = 3 у = 1.