Заметив, что х=1 - корень уравнения можно преобразовать : (x-1)*(x^3+3x^2-13x -15) Теперь заметим, что х=-1 тоже корень. Преобразуем: (x-1)*(x+1)*(x^2+2x-15)=(x-1)*(x+1)*((x+1)^2-4*4)=(x+1)*(x-1)*(x-3)*(x+5) Понятно, что уравнение с противоположными корнями : (x^2-1)*(x^2-2x-15) Или : х^4-2x^3-16x^2+2x+15=0 - Это ответ. Решение можно было получить проще, если сразу заметить, что х=1 и х=-1 корни уравнения. Тогда выражение представимо в виде (х^2-1)*(x^2-cx-15) . Легко подобрать с=2. По теореме Виета остальные корни разных знаков и они поменяются знаками если вместо с взять (-с). Сделав эту замену получим искомое.
Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
1) 250 метров
2) 0.000003
3) 0.0001
4) хз
Объяснение:
2 вариант
1) 5400 секунд
2) 0,0015 км
3) 1000
4) хз