М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
BlackDiamondIce
BlackDiamondIce
27.06.2021 10:35 •  Алгебра

Решите неравенство x+2/x-14 >_ 0 заменив его системами неравенств


Решите неравенство x+2/x-14 >_ 0 заменив его системами неравенств

👇
Ответ:
anka4323
anka4323
27.06.2021

правильный ответ четвертый вариант

Объяснение:

не знаю ли?


Решите неравенство x+2/x-14 >_ 0 заменив его системами неравенств
4,5(16 оценок)
Открыть все ответы
Ответ:
dynn
dynn
27.06.2021
(x^2-6x+13)^2-7

так как x^2-6x+13=x^2-6x+9+4=(x^2-6x+9)+4=(x-3)^2+4
наименьшее значение при х=3 оно равно 4
или иначе ax^2+bx+c
a=1;b=-6;c=13
a=1>0, значит ветви параболы направлены верх
так как D=b^2-4ac=(-6)^2-4*1*13=-16
то пересечений с осью абсцисс нет, парабола лежит выше оси Ох, иначе все ее значения положительны
(нам это важно так как будем еще возносить в квадрат, если бы были еще отрицательные - то смотрели бы на 0 )

минимум будет в вершине параболы
x=-\frac{b}{2a}; y=c-\frac{b^2}{4a}
x=-\frac{-6}{2*1}=-3; y=13-\frac{(-6)^2}{4*1}=4
минимальное значение y=4 при х=3

с учетом того что x^2-6x+130 значит и квадрат выражения (x^2-6x+13)^2будет принимать минимальное значение когда минимальное у x^2-6x+13 и оно будет 4^2=16 при х=3

(x^2-6x+13)^2-7 тоже примет минимальное значение при х=3 и оно будет равно 16-7=9
ответ: наименьшее значение 9 при х=3

второе решение более общее
там осталось только посчитать
(3^2-6*3+13)^2-7=9 - наименьшее значение
4,4(80 оценок)
Ответ:
Y = (x^2-6*x+13)^2-7
Необходимое условие экстремума функции одной переменной.
Уравнение f'0(x*) = 0 - это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной.
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f'0(x*) = 0
f''0(x*) < 0
то точка x* - локальный (глобальный) максимум.
Решение.
Находим первую производную функции:
y' = (4x-12)*(x2-6x+13)
или
y' = 4(x-3)*(x2-6x+13)
Приравниваем ее к нулю:
4(x-3)*(x2-6x+13) = 0
x1 = 3
Вычисляем значения функции 
f(3) = 9
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4x2-24x+(2x-6)*(4x-12)+52
или
y'' = 12x2-72x+124
Вычисляем:
y''(3) = 16>0 - значит точка x = 3 точка минимума функции.
Naydite naimenshee znachenie virajeniya (x^2 - 6x + 13)^2-7
4,8(71 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ