М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
looooooooollll
looooooooollll
20.04.2023 03:46 •  Алгебра

Х+32 х = -3,2 пример из состоятельной
решить

👇
Ответ:
manilipitaozk746
manilipitaozk746
20.04.2023

33х=-3.2

х = -16/165

ответ: -16/165

4,5(37 оценок)
Ответ:
DrozZzD
DrozZzD
20.04.2023

x+32x, если х = -3.2, то

-3,2 + 32*(-3,2)= -3,2 - 102,4 = -105,6

4,5(92 оценок)
Открыть все ответы
Ответ:
AlexMYP
AlexMYP
20.04.2023

7/12

Объяснение:

Заштрихованная фигура состоит из двух криволинейных трапеций. Одна, находящаяся над осью абсцисс, ограничена графиком y = x², двумя вертикальными прямыми x = -1 и x = 0, а также самой осью Ox. Вторая, находящаяся под осью абсцисс (из-за этого ее площадь возьмем со знаком минус), ограничена графиком y = x³, теми же вертикальными прямыми и той же осью Ox.

Тогда площадь S рассматриваемой фигуры будет равна сумме двух определенных интегралов (один — от x², другой — от x³ со знаком минус), оба вычисленных на отрезке [-1; 0]:

S=\int\limits^0_{-1} {x^2} \, dx -\int\limits^0_{-1} {x^3} \, dx =\frac{x^3}{3}\bigg|_{-1}^0-\frac{x^4}{4}\bigg|_{-1}^0 =\\\frac{0^3}{3}-\frac{(-1)^3}{3}-\big(\frac{0^4}{4}-\frac{(-1)^4}{4}\big)=0+\frac{1}{3} -0+\frac{1}{4} =\frac{7}{12}


Сделайте чертеж и вычислите площадь фигуры, ограниченной линиями: Дай бог здоровья кто это решит \:
4,4(49 оценок)
Ответ:
ubdjf
ubdjf
20.04.2023

Перенесем все влево и вынесем за скобки x:

x^3-6x^2-ax=0,\\\\x(x^2-6x-a)=0

Из этого следует, что уравнение всегда имеет хотя бы одно решение - x=0. Задача сводится к тому, чтобы посмотреть, при каких a будут корни у уравнения x^2-6x-a=0 и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.

1) проверим, при каком значении a корнем уравнения x^2-6x-a=0 будет x=0. Подставляем ноль в уравнение: 0-0-a=0\Rightarrow a=0. При a=0 имеем:

x(x^2-6x)=0, \\\\x\cdot x(x-6)=0;\\\\x^2(x-6)=0

Делаем вывод, что при a=0 уравнение имеет два корня: x=0, x=6.

2) при a\neq 0 уравнение x^2-6x-a=0 не может иметь корень x=0. Уравнение - квадратное. Сразу ищем дискриминант: D=(-6)^2-4\cdot1\cdot(-a)=36+4a.

Здесь рассматриваем 3 случая:

2.1. Если D,  то уравнение x^2-6x-a=0 решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.

2.2. Если D=0\Rightarrow 36+4a=0\Rightarrow a=-9, то подставляя вместо параметра -9 в итоге получаем: x^2-6x+9=0, (x-3)^2=0\Rightarrow x=3. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.

2.3. Если D0\Rightarrow 36+4a0\Rightarrow a-9, то уравнение x^2-6x-a=0 имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит a=0, а мы его проверяли отдельно - при a=0 корней будет 2, а не 3, поэтому из неравенства его нужно исключить.

ОТВЕТ: При a уравнение имеет единственный корень; при a=-9 и a=0 уравнение имеет два различных корня; при a\in(-9; 0)\cup(0; +\infty) уравнение имеет три различных корня.

4,6(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ