Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
2) Любую триг.функцию можно выразить через tg (x/2)
чтобы короче писать---я обозначу tg (x/2)===T
2 + (1 - T^2) / (1 + T^2) - 2T = 0
2(1 - T) + (1 - T^2) / (1 + T^2) = 0
2(1 - T)(1 + T^2) + (1 - T^2) = 0
(1 - T) * (2 + 2T^2 + 1 + T) = 0
(1 - T) * (2T^2 + T + 3) = 0 D = 1 - 4*2*3 < 0
T = 1
tg (x/2) = 1
x/2 = п/4 + пК
x = п/2 + 2пК
1) корень(3)/2 === cos(30) 1/2 === sin(30)
разделим обе части равенства на 2
cos(30)*sin3x + sin(30)*cos3x = 1/2
sin(3x+п/6) = 1/2
3x+п/6 = п/6 + 2пК 3x+п/6 = 5п/6 + 2пК
3x = 2пК 3x = 2п/3 + 2пК
x = 2п/3К x = 2п/9 + 2п/3К
Объяснение:
а)12a²b-24a²b³+8ab³-3a²+6ab²-2b²
б)m²+mn-2m-mn-n²+2n+2m+2n-4=m²-n²+4n-4