√(9+5x2-2x2²) =3-x2 √(9+5×(11/3)-2×(11/3)²)=3-(11/3) √(9+(55/3)-(242/9))=(3×3-11)/3 √((9×9+55×3-242)/9)=(9-11)/3 √((81+165-242)/9)=(-2/3) √((246-242)/9)=(-2/3) √(4/9)=(-2/3) (2/3)=(-2/3)-ложь, данный корень не является решением нашего уравнения.
Поэтому решением нашего уравнения является корень:
3x + 2y = 8;
2x + 6y = 10,
применим метод подстановки. И начнем мы с того, что второе уравнение разделим на 2 и получим:
3x + 2y = 8;
x + 3y = 5.
Выражаем из второго уравнения переменную x:
x = 5 - 3y;
3x + 2y = 8.
Подставляем вместо x выражение из первого уравнения.
x = 5 - 3y;
3(5 - 3y) + 2y = 8.
Решаем первое уравнение системы:
3 * 5 - 3 * 3y + 2y = 8;
15 - 9y + 2y = 8;
-9y + 2y = 8 - 15;
-7y = -7;
y = 1.
Система уравнений:
x = 5 - 3 * 1 = 5 - 3 = 2;
y = 1.