№1
1) ab-ac+yb-yc=a(b-c)+y(b-c)=(a+y)(b-c)
2)3x+3y-bx-by=3(x+y)-b(x+y)=(3-b)(x+y)
3) 4a-ab-4+b=a(4-b)-1(4-b)=(a-1)(4-b)
4) а^7+а^3 -4a^4-4=a^3(a^4+1)-4(a^4+1)=(a^3-4)(a^4+1)
5) 6ху-3x+2y-1=3x(2y-1)+1(2y-1)=(3x+1)(2y-1)
6) 4х^4-5х^3y-8х+10y=x^3(4-5y)-2(4-5y)=(x^3-2)(4-5y)
№2
1) 8a^2-8aв-5а+5в, если а = 8 , в = 4
8a^2-8aв-5а+5в=8a(a-в)-5(а-в)=(8а-5)(а-в)
(8*8-5)(8-4)=59*4=236 ответ: 236
2) 10х^3+х^2+10х+1, если х = 0,3
10х^3+х^2+10х+1=x^2(10x+1)+1(10x+1)=(x^2+1)(10x+1)
(0,3^2+1)(10*0,3+1)=1,09*4=4,36 ответ: 4,36
Согласно теореме Виета, сумма корней квадратного уравнения равна отрицательному коэффициенту b:
x1 + x2 = -b
Произведение корней квадратного уравнения в этой же теореме равно свободному коэффициенту с:
х1 × х2 = с
Доказательство:
Возьмём следующее уравнение:
х² + 6х - 7 = 0
Сначала решим его через дискриминант:
D = b² - 4ac = 36-4×(-7) = 36+28 = 64
x1,2 = (-b±√D)÷2a = (-6±8)÷2
x1 = (-6+8)÷2 = 1
x2 = (-6-8)÷2 = -7
Теперь решим это же уравнение через теорему Виета:
Мы знаем, что:
х1 + х2 = -b
x1 × x2 = c
Осталось лишь подобрать такие корни уравнения, которые бы подходили под эти два равенства. Путём нехитрых вычислений, находим, что этими корнями являются числа -7 и 1:
-7 + 1 = -6 = -b
-7×1 = -7 = c
ответы сходятся, значит наши рассуждения верны.
Это работает со всеми квадратными уравнениями, в которых коэффициент а = 1.
Теорема доказана.