В решении.
Объяснение:
Рис. 1
1) Координаты вершины параболы (2; -1);
2) Уравнение оси симметрии: а = 2;
3) Нули функции - координаты точек пересечения параболой оси Ох, где у = 0:
(1; 0); (3; 0).
4) Функция возрастает при х∈(2; +∞);
функция убывает при х∈(+∞; 2).
5) Область значений функции - это проекция графика на ось Оу.
Обозначение Е(f) или Е(y).
Область значений параболы ограничена ординатой её вершины, у= -1.
у может быть больше, либо равен -1.
Е(y) = у∈[-1; +∞)
6) у наиб. не существует.
у наим. = -1.
Рис. 2
1) Координаты вершины параболы (-2; 2);
2) Уравнение оси симметрии: а = -2;
3) Нули функции - координаты точек пересечения параболой оси Ох, где у = 0:
(0; 0); (-4; 0).
4) Функция возрастает при х∈(-∞; -2);
функция убывает при х∈(-2; -∞).
5) Область значений функции - это проекция графика на ось Оу.
Обозначение Е(f) или Е(y).
Область значений параболы ограничена ординатой её вершины, у=2.
у может быть меньше, либо равен 2.
Е(y) = у∈[2; -∞)
6) у наим. не существует.
у наиб. = 2.
Sin^4 4x + cos^2 x = 2sin4x * cos ^4 x
1\/8 (4 cos(2 x)-4 cos(8 x)+cos(16 x)+7) = 1\/8 (4 sin(2 x)+6 sin(4 x)+4 sin(6 x)+sin(8 x))
1\/2 cos^2(x) (-5 cos(2 x)+2 cos(4 x)+cos(6 x)-4 cos(8 x)+3 cos(10 x)-2 cos(12 x)+cos(14 x)+6) = 16 sin(pi\/4-x) sin(x) sin(x+pi\/4) cos^5(x)
1\/16 (e^(-4 i x)-e^(4 i x))^4+1\/4 (e^(-i x)+e^(i x))^2 = 1\/16 i (e^(-i x)+e^(i x))^4 (e^(-4 i x)-e^(4 i x))
x~~2. (3.14159 n-1.49581), n element Z
x~~2. (3.14159 n-1.43778), n element Z
x~~2. (3.14159 n+0.0749867), n element Z
x~~2. (3.14159 n+0.133013), n element Z
x~~2. (3.14159 n - (1.26876+0.0590281 i) ), n element Z
вот кароче ток я подсчёты не сфоткал