М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
exm0r3d
exm0r3d
27.04.2020 11:08 •  Алгебра

Решить уравнение tg(x+п\4)=0 п-число пи

👇
Ответ:
bodik228
bodik228
27.04.2020

тангенс=0, только в значении 0, пи*н , н-число оборотов

в данном случае пи*н не подходит, следовательно => в скобках должен быть 0, 

(x+П\4)=0

х=-П\4

ответ: х=-П\4

4,6(33 оценок)
Открыть все ответы
Ответ:
kotyaraasm
kotyaraasm
27.04.2020
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ...
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116

2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.
4,6(69 оценок)
Ответ:
DarinaDoka666
DarinaDoka666
27.04.2020
Все задания сводятся к решению квадратных неравенств. Если у неравенства коэф-т при x^2<0, то можно умножить обе части на (-1).
Общий вид квадратного трехчлена ax^2+bx+c. Для решения неравенства
ax^2+bx+c>=(<)0 можно применять графический
Решая квадратное уравнение находим точки пересечения параболы с осью OX.
Если a>0, то ветви направлены вверх
x1 и x2 - корни уравнения, причем x1<x2
ax^2+bx+c>0, если x∈(-∞;x1)∨(x2;+∞)
ax^2+bx+c<0, если x∈(x1;x2)
1.3x^2-2x-4=0⇒x=(1+(-)√1+3*4)/3⇒x1=(1-√13)/3; x2=(1+√13)/3; x1>x2
3x^2-2x-4>0, если x∈(-∞;(1-√13)/3)∨((1+√13)/3;+∞)
Оценим значения корней
3<√13<4⇒4<1+√13<5⇒4/3<(1+√13)/3<5/3⇒
4; 6 и 2006 принадлежат интервалу ((1+√13)/3;+∞)
-4<-√13<-3⇒-3<1-√13<-2⇒-1<(1-√13)/3<-2/3⇒
-3; -2 принадлежат интервалу ((-∞;1-√13)/3)
Решениями неравенства не являются 0 и 1
2. (a^2-16)/(2a^2-3a+3)>0⇒(a^2-16)*(2a^2-3a+3)>0 и 2a^2-3a+3≠0
Найдем ОДЗ: 2a^2-3a+3=0; D=b^2-4ac=3^2-2*3*4=9-24<0⇒ 2a^2-3a+3>0 для всех a. Значит и (a^2-16)>0⇒(a-4)(a+4)>0
a1=-4; a2=4 - корни уравнения (a-4)(a+4)=0⇒
a∈(-∞;4)∨(4;+∞)
3. y=√2x/(6-x)
ОДЗ: 2x/(6-x)>=0⇒x*(6-x)>=0 и (6-x)≠0; x≠6
x1=0; x2=6 - корни уравнения x*(6-x)=0 ⇒
x∈(-∞;0]∨(6;+∞)
4. .I3x2-4x-4I=4+4x-3x2⇒I3x^2-4x-4I=-(3x^2-4x-4)⇒по определению модуля
Нужно решить неравенство 3x^2-4x-4<0
3x^2-4x-4=0⇒x=(2+(-)√4+4*3)/3⇒x1=(2-4)/3=-2/3; x2=(2+4)/3=2⇒
x∈(-2/3;2)
Во всех этих случаях хорошо сделать эскиз параболы, Для этого на оси x отметить корни уравнения и знать направление ветвей.
Неравенство >0 для тех значений x, где ветви параболы выше оси x.
Неравенство<0 для тех значений x, где ветви параболы ниже оси x.
4,4(8 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ