Пусть дан прямоугольный треугольник ABC с прямым углом C, и острым углом А=60 градусов. Пусть CDKN – данный прямоугольник, точка D лежит на катете AC , K лежит на гипотенузе AB=8 см, точка N лежит на катете BC.Тогда по условию задачи BC=AB*sin A=8*sin 60=4*корень(3).АС=8*сos 60=8*1\2=4Пусть CD=x см, тогда AD=4-x смТогда DK=AD*tg A=(4-x)*корень(3)Площадь прямоугольника CDKN S(x)=CD*DK=x*(4-x)*корень(3)Ищем производную S’(x)=корень(3)*(4-х-х)=2 *корень(3)*(2-х)Ищем критические точки S’(x)= 2 *корень(3)*(2-х)=0Х=2От 0 до 2 производная больше 0, от 2 до 8 меньше 0, значит в точке 2 у функции максимум, то есть площадь прямоугольника S(x) принимает наибольшее значение для х=2S(2)= 2*(4-2)*корень(3)=4*корень(3).Овтет: 4*корень(3).
Это уравнение с одним неизвестным с, только, как мне кажется, оно записано с ошибкой, здесь надо выражение 3с - 1 взять в скобки, потому что иначе получается, что на 14 надо делить (-1), а не (3с - 1): Общий знаменатель в данном случае - 14. Поэтому первую дробь домножаем на 2 и "двойку" во второй части уравнения домножаем на 14. Получаем после этого уравнение: 2с - (3с - 1) = 2 * 14 Открываем скобки: 2с - 3с + 1 = 28 -с = 27 с = -27 Всегда стоит проверять, правильно ли решено, т.е. подставить полученное решение с = -27 в данное уравнение. Если обе части уравнения окажутся равны, то решение правильное.
X1,2= 13±√133 / 6
Объяснение: