М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sir13
sir13
24.02.2023 20:55 •  Алгебра

Решите уравнение х в квадрате плюс 6х и все это в квадрате плюс 2 в скобках х плюс 3 и все в квадрате

👇
Ответ:
milka1951
milka1951
24.02.2023

(x^2+6x)^2+2(x+3)^2 = 0

\sqrt{(x+6x)^2+2(x+3)^2} = \sqrt{0}

x^2+6x+(x+3)*\sqrt{2 }=0

x^2+6x+\sqrt{2}x+3\sqrt{2} = 0

(x^2+6x+\sqrt{2}x+3\sqrt{2} )^2 = 0^2

x^4+36x^2+2x^2+18 = 0

x^4+38x^2+18 = 0

x^2 = k

k^2+36k+18=0

D = 38^2-4*1*18 = 1369

k_1 =\frac{-38+37}{2} = -0,5

k_2 = \frac{-38-37}{2} = -37,5

x_1 = 0,25  x_2 = 1406,25

 

4,6(80 оценок)
Открыть все ответы
Ответ:
arhivnaykr
arhivnaykr
24.02.2023

(-\infty; 1)\cup (1;2)

Объяснение:

Перенесём один из корней влево, а одну из семёрок — вправо следующим образом:

7^{ax^2-2x}-7^{x^2-1}=\sqrt[7]{2x-ax^2}-\sqrt[7]{1-x^2} \\7^{ax^2-2x}-\sqrt[7]{2x-ax^2}=7^{x^2-1}-\sqrt[7]{1-x^2}\\7^{ax^2-2x}+\sqrt[7]{ax^2-2x} =7^{x^2-1}+\sqrt[7]{x^2-1}

Рассмотрим функцию f(x)=7^x+\sqrt[7]{x}. Она представляет собой сумму двух монотонно возрастающих функций (показательная и функция корня седьмой степени), следовательно она также монотонно возрастает. Значит, каждому аргументу соответствует ровно одно значение функции, то есть функция f(x) взаимно однозначна.

Уравнение в таком случае принимает следующий вид:

f(ax^2-2x)=f(x^2-1)

Поскольку каждому значению функции соответствует только одно значение аргумента, равенство значений функции можно свести к равенству её аргументов:

ax^2-2x=x^2-1\\(a-1)x^2-2x+1=0

Если a-1=0\Leftrightarrow a=1, то это линейное уравнение, имеющее не более одного корня, что не подходит.

Если a\neq 1, то это квадратное уравнение. Оно имеет два корня при положительном дискриминанте:

D=4-4(a-1)=4(2-a)0\Leftrightarrow a

Учитывая, что a\neq 1, получаем ответ a\in (-\infty; 1)\cup (1;2)

4,4(2 оценок)
Ответ:
Nessmikk13
Nessmikk13
24.02.2023

ОДЗ:

\left \{ {{x^2+2x-20} \atop{ {x^2+2x-2\neq1 }\atop{\frac{|x+4|-|x|}{x-1}0 }} \right.

Решаем каждое неравенство:

x^2+2x-20    ⇒   (x+1)^2-3 0   ⇒(x+1-\sqrt{3})(x+1+\sqrt{3})0

x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)

x^2+2x-2\neq 1    ⇒     x^2+2x-3\neq 0  ⇒     x\neq -3;  x\neq 1

\frac{|x+4|-|x|}{x-1}0  

Подмодульные выражения обращаются в 0 в точках

x=-4    и  x=0

Это точки делят числовую прямую на три промежутка.

Раскрываем знак модуля на промежутках:

(-∞;-4]

|x+4|=-x-4

|x|=-x

\frac{-x-4-(-x)}{x-1}0     ⇒     \frac{-4}{x-1}0    ⇒    x < 1

решение неравенства (-∞;-4]

(-4;0]

|x+4|=x+4

|x|=-x

\frac{x+4-(-x)}{x-1}0     ⇒     \frac{2x+4}{x-1}0    ⇒    x < -2 или  x > 1

решение неравенства (-4;-2)

(0;+∞)

|x+4|=x+4

|x|=x

\frac{x+4-x}{x-1}0     ⇒     \frac{4}{x-1}0    ⇒    x > 1

решение неравенства (1;+∞]

Объединяем  ответы трех случаев:

\frac{|x+4|-|x|}{x-1}0    при   x \in (-\infty;-2)\cup(1;+\infty)

ОДЗ:

\left \{ {{x\in (-\infty;-1-\sqrt{3}) \cup{-1+\sqrt{3};+\infty)} \atop{ {x\neq-3; x\neq 1 }\atop{ x \in (-\infty;-2)\cup(1;+\infty)}} \right.

x\in (-\infty;-3)\cup(-3;1-\sqrt{3}) \cup(1;+\infty)

Решаем неравенство:  log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}0

0=log_{x^2+2x-1}1

log_{x^2+2x-2}\frac{|x+4|-|x|}{x-1}log_{x^2+2x-2}1

Два случая:

если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента

\left \{ {{x^2+2x-21} \atop {\frac{|x+4|-|x|}{x-1}1}} \right.     ⇒     \left \{ {{x^2+2x-30} \atop {\frac{|x+4|-|x|-x+1}{x-1}0}} \right.     ⇒           \left \{ {{x\in (-\infty;-3) \cup(1;+\infty)} \atop {x\in(-\infty;-4]\cup(1;5)}} \right.

второе неравенство решаем на промежутках  так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}0    ⇒    \frac{-3-x}{x-1}0   ⇒    \frac{x+3}{x-1}  ⇒ (-3;-1)

не принадлежат (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}0      ⇒      \frac{x+5}{x-1}0    ⇒    x < -5   или  x > 1

не принадлежат (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}0      ⇒    \frac{5-x}{x-1}0    ⇒   \frac{x-5}{x-1}    ⇒x\in (1;5)

о т в е т  этого случая (1;5)

если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента

\left \{ {{0     ⇒     \left \{ {0      ⇒   \left \{ {{x\in (-3;-1-\sqrt{3}) \cup(-1+\sqrt{3};1)} \atop {x\in(-\infty;-4]\cup(-4;0]\cup(5;+\infty)}} \right.

второе неравенство решаем на промежутках так:

(-∞;-4]

\frac{-x-4-(-x)-x+1}{x-1}    ⇒    \frac{-3-x}{x-1}   ⇒    \frac{x+3}{x-1}0  ⇒

(-∞;-3)U(1;+∞)

о т в е т. (-∞;-4]

на (-4;0]

\frac{x+4-(-x)-x+1}{x-1}      ⇒      \frac{x+5}{x-1}    ⇒     -5 < x < 1

о т в е т.  (-4;0]

(0;+∞)

\frac{x+4-x-x+1}{x-1}      ⇒    \frac{5-x}{x-1}    ⇒   \frac{x-5}{x-1}0    ⇒x\in (0;1)\cup(5;+\infty)

о т в е т  этого случая (-3;-1-\sqrt{3})

С учетом ОДЗ получаем окончательный ответ:(-3;-1-\sqrt{3})\cup(1;5)

4,6(75 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ